
Manju Roy
Visiting Professor
Manju Roy
Visiting Professor, Biophysics
PhD: University of Cacutta, 1975
Research interests:
Contact:
Address: |
Department of Biophysics Centenary Campus Bose Institute P-1/12 C.I.T. Scheme VII-M Kolkata - 700054, India |
E-Mail: | manjuray[at]jcbose.ac.in |
Research:
Publications:
I. Galactose
metabolism and Enzymology
1. Galactose 6-Phosphate dehydrogenase : A new enzyme from mammalian liver. Ray, M., Pal, D. K. and Bhaduri, A. (1972) FEBS Letters 25, 239-241.
2. Two forms of UDPGlucose 4-epimerase from mammalian liver. Ray, M. and Bhaduri, A. (1973) Biochim. Biophys. Acta. 302, 129-134.
3. UDPGlucose 4-epimerase from Saccharomyces fragilis. Interaction with sugar phosphates at an effector site. Ray, M. and Bhaduri, A. (1974) Biochem. Biophys. Res. Commun. 60, 1081-1089.
4. Galactose 6-phosphate dehydrogenase : Purification and partial characterization. Ray, M. and Bhaduri, A. (1975) J. Biol. Chem. 250, 3595-3601.
5. UDPGlucose 4-epimerase from Saccharomyces fragilis : Allosteric Kinetics with UDPGlucose as substrate. Ray, M. and Bhaduri, A. (1975) J. Biol. Chem. 250, 4373-4375
6. UDPGlucose 4-epimerase from Saccharomyces fragilis : Desensitization with heat. Ray, M. and Bhaduri, A. (1975) Biochem. Biophys. Res. Commun. 67, 877-882.
7. On the interaction of sugar phosphates and cations with UDPGlucose 4-epimerase from Saccharomyces fragilis. Ray, M., Kar, K. and Bhaduri, A. (1976) Indian J. Biochem. Biophys. 13, 311-315.
8. UDP Glucose 4-epimerase from Saccharomyces fragilis : Inactivation by heat and reconstitution of the inactive enzyme. Ray, M. and Bhaduri, A. (1976) Eur. J. Biochem. 70, 319-323.
9. UDPGlucose 4-epimerase from Saccharomyces fragilis : Activity and fluorescence of the Native enzyme in relation to sulphdryl groups. Ray, M., Kar, K. and Bhaduri, A. (1978) Indian J. Biochem. Biophys. 15, 417-419.
10. UDPGlucose 4-epimerase from Saccharomyces fragilis : Involvement of sulphydryl group at the active site. Ray, M., Kar, K. and Bhaduri, A. (1978) Biophys. Acta. 526, 635-639.
11. UDPGlucose 4-epimerase from Saccharomyces fragilis : Asymmetry in allosteric properties leads to unidirectional catalysis. Ray, M. and Bhaduri, A. (1978) Biochem. Biophys. Res. Commun. 85, 242-248.
12. Presence of two conformationally vicinal sulphydryl groups at the active site of UDPGlucose 4-epimerase from Saccharomyces fragilis. Ray, M. and Bhaduri, A. (1980) J. Biol. Chem. 255, 10777-10781.
13. Fluorescence properties of reconstituted forms of UDPGlucose 4-epimerase from Saccharomyces fragilis. Ray, M. and Bhaduri, A. (1980) J. Biol. Chem. 255, 10782-10786.
II. Parasite Biochemistry
14. Asparate transcarbamylase from Leishmania donovani. A discrete, nonregulatory enzyme as a potential chemotherapeutic site. Mukherjee, T., Ray, M. and Bhaduri, A. (1988) J. Biol. Chem. 263, 708-713.
15. A high affinity Ca2+-ATPase on the surface membrane of Leishmania donovani promastigote. Ghosh, J., Ray, M., Sarkar, S. and Bhaduri, A. (1990) J. Biol. Chem. 265, 11345-11351.
16. Allosteric modulation of Leishmania donovani plasma membrane Ca2+-ATPase by endogenous calmodulin. Mazumder, S., Mukherjee, T., Ghosh, J., Ray, M. and Bhaduri, A. (1992) J. Biol. Chem. 267, 18440-18446.
17. Allosteric modulation
of Leishmania donovani plasma
membrane Ca2+-ATPase. Mazumder, S., Bhaduri, A., Mukherjee, T. and Ray, M. (1993) Current Trends in Leishmania Research (Ed.
Bhaduri et al.) CSIR,
III. Methylglyoxal metabolism and its
anticancer role
18. Isolation of methylglyoxal synthase from goat liver. Ray, S. and Ray, M. (1981) J. Biol. Chem. 256, 6230-6233.
19. Purification and characterization and NAD and NADP-linked alpha ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. Ray, S. and Ray, M. (1982) J. Biol. Chem. 257, 10566-10570.
20. On the interaction of nucleotides and glycolytic intermediates with NAD linked alpha-ketoaldehyde. Ray, M. and Ray, S. (1982) J. Biol. Chem. 257, 10571-10574.
21. Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma. Ray, S. and Ray, M. (1983) J. Biol. Chem. 258, 3461-3462.
22. Purification and partial characterization of a methylglyoxal reductase from goat liver. Ray, M. and Ray, S. (1984) Biochim. Biophys. Acta. 802, 119-127.
23. Oxidation lactaldehyde by cytosolic aldehyde dehydrogenase and inhibition of cytosolic and mitochondrial aldehyde dehydrogenase by metabolites. Ray, S. and Ray, M. (1984) Biochim. Biophys. Acta. 802, 128-134.
24. L-Threonine dehydrogenase from goat liver. Feedback inhibition by methylglyoxal. Ray, M. and Ray, S. (1985) J. Biol. Chem. 260, 5913-5918.
25. UDPGlucose 4-epimerase from Ehrlich Ascites Carcinoma cells. Datta, S.K., Ray, M. and Bhaduri, A. (1985) J. Biosciences 9, 59-70.
26. Aminoacetone oxidase from goat liver. Formation of methylglyoxal from aminoacetone. Ray, M. and Ray, S. (1987) J. Biol. Chem. 262, 5974-5977.
27. A reinvestigation of inhibitors of glyoxylase I. Ray, S. and Ray, M. (1987) J. Biosciences 12, 405-414.
28. Inhibition of respiration of tumur cells by methylglyoxal and protection of inhibition by lactaldehyde. Ray, M., Halder, J., Datta, S.K. and Ray, S. (1991) Int. J. Cancer 47, 603-609.
29. Aminoacetone synthase from goat liver : Involvement of arginine residue at the active site and on the stability of the enzyme. Ray, S., Sarkar, D. and Ray, M. (1991) Biochem. J. 275, 575-579.
30. Inhibition of glycolysis and mitochondrial respiration of Ehrlich Ascites Carcinoma cells by methylglyoxal. Halder, J., Ray, M. and Ray, S. (1993) Int. J. Cancer 54, 443-449.
31. Inhibition of electron flow thorough complex I of the mitochondrial respiratory chain on Ehrlich Ascites Carcinoma cells by methylglyoxal. Ray, S., Datta, S., Halder, J. and Ray, M. (1994) Biochem. J. 303, 69-72.
32. Glyoxalase III from Escherichia coli a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Misra, K., Banerjee, A.B., Ray, S. and Ray, M. (1995) Biochem. J. 305, 999-1003.
33. Reduction of methylglyoxal by an aldehyde reductase and alcohol dehydrogenase in Escherichia coli. Misra, K., Banerjee, A.B., Ray, S. and Ray, M. (1996) Mol. Cell. Biochem. 156, 117-124.
34. Interaction of aldehydes with glyoxalase I and the status of several aldehyde metabolizing enzymes of Ehrlich Ascites Carcinoma cells. Biswas, S., Bhattacharya, S., Ray, M. and Ray, S. (1996) Mol. Cell. Biochem. 165, 9-14.
35. Does excessive adenosine 5’-triphosphate formation in cells lead to malignancy ? A hypothesis on Cancer. Ray, S. and Ray, M. (1997) Medical Hypotheses 4, 473-476.
36. Selective inhibition of mitochondrial respiration and glycolysis of human leukemic leukocytes by methylglyoxal. Biswas, S., Ray, M. and Ray, S. (1997) Biochem. J. 323, 343-348.
37. Similar nature of inhibition of mitochondrial respiration of heart tissue and malignant cells by methylglyoxal. A vital clue to understand the biochemical basis of malignancy. Ray, S., Biswas, S. and Ray, M. (1997) Mol. Cell. Biochem. 171, 95-103.
38. Inactivation of Glyceraldehyde 3-phosphate dehydrogenase of human malignant cells by methylglyoxal. Ray, M., Basu, N. and Ray, S. (1997) Mol. Cell. Biochem. 177, 21-26.
39. Is absence of pyruvate dehydrogenase complex in mitochondria a possible explanation of significant aerobic glycolysis by normal human leukocytes ? Biswas, S., Ray, M., Misra, S., Dutta, D.P. and Ray, S. (1998) FEBS Letts. 425, 411-414.
40. Methylglyoxal : From a putative intermediate of glucose breakdown to its role in understanding that excessive ATP formation in cells may lead to malignancy. Ray, M. and Ray, S. (1998) Current Science,75, 103-113
41. Glyceraldehyde-3-phosphate dehydrogenase from Ehrlich ascites carcinoma cells. Its possible role in the high glycolysis of malignant cells. Bagui, S, Ray, M. and Ray, S. (1999) Eur. J. Biochem. 262, 386-395.
42. Implication of the bioelectronic principle in cancer therapy : treatment of cancer patients ascites by methylglyoxal-based formulation. Ray, M., Ghosh, S., Kar, M., Datta, S. and Ray, S. (2001) Indian J. Phys. 75B, 73-77.
43. Identification of a critical lysine residue at the active site in glyceraldehyde-3-phosphate dehydrogenase of Ehrlich ascites carcinoma cell. Comparison with the rabbit muscle enzyme. Ghosh, S., Mukherjee, K., Ray, M. and Ray, S. (2001) Eur. J. Biochem. 268, 6037-6044.
44. Purification and characterization of 3-phosphoglycerate kinase from Ehrlich carcinoma cell. Mukherjee, K., Ghosh, S., Ray, M. and Ray, S. (2002) Indian J. Biochem. Biophys. 39, 332-341.
45. Protective effect of creatine against inhibition by Methylglyoxal of mitochondrial respiration of cardiac cell . Sinha Roy, S ., Biswas, S., Ray , M . and Ray, S. (2003) Biochem. J. 372, 661-669.
46. Evidence for the presence of a critical histidine residue at the active site in glyceraldehyde-3-phosphate dehydrogenase of Ehrlich ascites carcinoma cells. Ghosh, S., Ray, M. and Ray, S. (2004) Indian J. Biochem. Biophys. 41, 7-13.
47.
Methylglyoxal can completely replace the requirement of
kinetin to induce
differentiation of plantlets from some plant calluses.
48. Possible involvement of glutamic and / or aspartic acid residue(s) and requirement of Mitochondrial integrity for the protective effect of creatine against inhibition of cardiac mitochondrial respiration by methylglyoxal. Sinha Roy, S., Banerjee N. S., Ray, M. and Ray, S. (2005) Molecular and Cellular Biochemistry, 271, 167-176.
49. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione . Jadav, S.K., Singla – Pareek, Sneh L., Ray, M., Reddy, M. K., Sopory, S.K. (2005) Biochemical Biophysical Research Communication, 337, 61- 67.
50. Synthesis of hydrophilic Fischer carbene complexes as organometallic marker and PEGylating agent for proteins. Samanta , D., Sawoo, S., Patra, S., Ray, M., Salmain, M., Sarkar, A. (2005) Journal of Organometallic Chemistry, 690, 5581-5590.
51. In vivo assessment of toxicity and pharmacokinetics of methylglyoxal. Augmentation of the curative effect of methylglyoxal on cancer- bearing mice by ascorbic acid and creatine. Ghosh, M.,Talukdar, D., Ghosh, S., Bhattacharyya, N., Ray, M. and Ray, S. (2006) Toxicology and Applied Pharmacology, 212, 45-58.
52. Further testing of antiviral activity of methylglyoxal urgently needed. Talukdar, D., Ray, S. and Ray, M. (2006) Medical Hypotheses, 67, 673-674.
53. Treatment
of a number of
cancer patients suffering
from different types
of malignancies by methylglyoxal-based formulation: A promising result. Talukdar, D., Ray, S., Das,
S., Jain, A. K., Kulkarni, A. and
Ray, M. (2006).
Cancer Therapy, 4B, 205-222.
54. Albumin-quercetin combination offers a therapeutic advantage in the prevention of reduced survival of erythrocytes in visceral leishmaniasis. Sen, G, Biswas,T., Ray, M and Biswas T. (2007). Blood Cells Mol Dis., 39(3), 245-54
55. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity". Sen, G.,Mukhopadhyay, S., Ray, M. and Biswas, T. (2008). Journal of Antimicrobial Chemotherapy. 61, 1066-75.
56. A brief critical overview on the biological effects of methylglyoxal and further evaluation of methylglyoxal-based anticancer formulation in treating cancer patients. Talukdar, D., Ray, S., Ray, M. and Das, S. (2008).Drug Metabolism and Drug Interactions.23, 175-210.
57. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. Patra, S., Bera, S., SinhaRoy, S., Ghoshal, S., Ray, S., Basu, A., Schlattner,U., Wallimann,T., and Ray, M .(2008) FEBS J. 275,3236-3247.
58. Activation of macrophages and lymphocytes by methylglyoxal against tumor cells in
the
host. Bhattacharyya, N., Pal, A., Patra,
S., Haldar AK., Roy S., Ray, M. (2008) International Immunopharmacology. 8:1503-1512.
59. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and
malignant cells. Bera S, Wallimann T, Ray S and Ray M. (2008) FEBS Journal, 275: 5899– 5909.
60. Retardation of senescence of detached leaves by methylglyoxal. Banerjee S N, Roy K,
Ray S and Ray M. Indian Journal of Plant Physiology (2008), 13: 300-306
61.
Molecular Characterization of Tumor Associated Glyceraldehyde-3-phosphate
Dehydrogenase. Patra, S., Ghosh, S., Bera, S.,
62. Transcriptional cascade associated with creatine kinase down-regulation and mitochondrial biogenesis in mice sarcoma. Bera S and Ray M. (2009) Cellular and Molecular Biology Letters. 14: 481-496.
63.
A
critical evaluation of toxic versus beneficial effects of methylglyoxal.
Talukdar, D.,
Chaudhuri, B.S., Ray,
M. and Ray,S. (2009) Biochemistry (
64. Methylglyoxal induced activation of murine peritoneal macrophages and surface markers of T lymphocytes in Sarcoma-180 bearing mice: Involvement of MAP kinase,NFkb signal transduction pathway. Pal, A., Bhattacharya, I.Bhattacharya, K.,Mandal, C., Ray, M (2009) Molecular Immunology, 46: 2039–2044
65. A novel D-glyceraldehyde-3-phosphate binding protein, A truncated albumin, with D-glyceraldehyde-3-phosphate dehydrogenase inhibitory property. Roy A., Bera, S., Patra, S., Ray S. and Ray, M. (2009) IUBMB Life, 61: 995–1000.
66.
Methylglyoxal
destroys Agrobacterium tumefaciens crown gall tumours in Nicotiana tabacum
without any adverse effect on the host plant. A. Ray, C. Roy, S. Ray, M.
Mazumder, D.N. Sengupta and Ray, M (2011), Biologia
Plantarum. 55:312-316.
67. Differential inhibition/inactivation of mitochondrial
complex I implicates its alteration in malignant cells. Ghosh,A., Bera, S.,
Ghosal, S., Ray, S., Basu, A. and Ray,
M. (2011) Biochemistry
68. Methylglyoxal
induces mitochondria-dependent apoptosis in sarcoma. Ghosh, A., Bera, S., Ray,
S., Banerjee, T. and Ray, M. (2011) Biochemistry
69. Mechanistic studies on the binding of Acid Yellow 99 on coir pith. Khan, M.M.R., Ray, M., Guha, A.K. (2011) Bioresource Technology 102:2394–2399.
70. A short review on creatine-creatine kinase system in relation to cancer and some experiential results on creatine as adjuvant in cancer therapy. Patra, S., Ghosh, A., Roy, S.S., Bera, S., Das, M., Talukdar, D., Ray, S., Wallimann, T. and Ray, M. (2012) Amino Acids 42: 2319–2330.
71. Methylglyoxal with glycine or succinate enhances differentiation and shoot morphogenesis in Nicotiana tabacum callus. Ray, A., Ray, S., Mukhopadhyay , S., and
Ray, M (2013), Biologia Plantarum 57 (2): 219-223.
72. Cancer Stem Cells, Wnt, Hedgehog and Notch
Signaling, the Role of Dietary Phytochemicals: New Insights for Cancer Therapy. Roy A., Ray,
M. and Jana, K. (2013) Translational Medicine Volume 3(3): 1000e125
73. Immunomodulation of macrophages by
methylglyoxal conjugated with chitosan nanoparticles against Sarcoma-180 tumor
in mice. Chakrabarti, A., Talukdar, D., Pal, A. and Ray, M (2014) Cellular Immunology 287: 27–35.
74. Modulation of Glyceraldehyde-3-phosphate dehydrogenase Activity by Surface Functionalized Quantum Dots. Ghosh, S., Ray, M., Das, M.R., Chakraborty, A., Khan, A.H., Sarma, D.D., and Acharya, S. (2014), Physical Chemistry Chemical Physics,16, 5276-5283.
75. Polymer based nanoformulation of methylglyoxal as an antimicrobial agent: efficacy against resistant bacteria. Ghosh S., Chakraborty P., Saha P., Acharya S. and Ray M. (2014), RSC Advances,4,23251-61.
76.
Nanofabrication of methylglyoxal with
chitosan biopolymer: A potential tool for enhancement
of its anti cancer effect. Pal A.,
Talukdar D., Roy A., Ray S., Mallick A., Mandal C. and Ray M. (2015) International Journal of Nanomedicine, 10, 3499-4518.
77. Biological activity of
dendrimer-methylglyoxal complexes for improved therapeutic efficacy against malignant cells.
Ghosh S, Chakraborty P, Adrita Chakrabarti A, Ghosh M, Mandal A, Saha P, Mukherjee A, Acharya S, Ray M (2016)
RSC Advances ,6, 6631-6642.
78. Molecular
association of Glucose-6-phosphate isomerase and Pyruvate kinase M2 with
Glyceraldehyde-3-phosphate dehydrogenase in cancer cells. Das MR, Bag AK,Saha
S,Ghosh A, Dey SK, Das P,Mandal C, Ray S, Chakrabarti S, Ray M, Jana
SS (2016) BMC Cancer (2016) 16:152.
79. Creatine supplementation with Methylglyoxal: A Potent Therapy for Cancer in Experimental
Models. Aparajita Pal, Anirban Roy, Manju Ray . Amino Acids (2016) 48:2003–2013.
80. Induction of Mitochondrial Apoptotic Pathway in
Triple Negative Breast Carcinoma Cells by Methylglyoxal via Generation of
Reactive Oxygen Species. A Roy, M Ahir, S Bhattacharya, P K Parida, A Adhikary,
K Jana, M Ray. Accepted
manuscript online: 18 April 2017 DOI: 10.1002/mc.22665 (Epub ahead of print)
Recognition:
- University of Calcutta Gold Medal, 1969
- Indian National Science Academy (INSA) Young Scientist Medal , 1975
- Shanti Swarup Bhatnagar Prize in Biological Sciences , 1989
- Ladies Study Group Life Time Achievement Award, 2001
- Dr I.C. Chopra Memorial Award (for Pharmacology & Drug Development ), 2002
- Fellow of the West Bengal Academy of Science and Technology , 2002
- Dr. Jnan Chandra Ghosh Memorial Award, 2008
Teaching:
Present:
Image | Name | Designation | Department | Campus | Contact number | |
---|---|---|---|---|---|---|
![]() |
Anirban Roy | SRF | Biophysics | Centenary | 25693218 | anirban89roy@gmail.com |
![]() |
Sonali Ghosh | JRF | Biophysics | Centenary | 25693218 | sonali.ghosh9540@gmail.com |
Former:
Dipa Talukdar
Aparajita Pal
Anirban Roy
Ananya Datta
Sonali Ghosh