Gaurisankar Sa
NASI-Senior Scientist
Gaurisankar Sa
NASI-Senior Scientist, Division of Molecular Medicine
PhD: University of Calcutta, 1990
Previous appointments:
Visiting Faculty: Virginia Tech, USA, 1992
Post-doctoral Fellow, Cleveland Clinic, USA, 1992-1994
Visiting Scientist: Cleveland Clinic, USA, 1999-2000
Visiting Scientist: Cleveland Clinic, USA, 2002-2003
Visiting Scientist: Cleveland Clinic, USA, 2005, 2007
Visiting Scientist: Cleveland Clinic, USA, 2001-2012
Research interests:
Research Interest:
Tumor
Immunology
o
Immunotherapy of Cancer
o
Tumor immune editing
o
Epigenetic & transcriptional regulation of T- &
B-regulatory cells development and function in cancer
o
Epigenetic regulation of T cell plasticity
o
Role of micro- and long non-coding in T-regulatory cell
development
Cancer
Biology
o
Cell cycle regulation in normal and cancer cells.
o
Oncogenic RAS & p53 biology
o
Genomic, proteomic and system biology approach to develop targeted
anti-cancer therapy
o
Precision oncology
Contact:
Address: |
Division of Molecular Medicine Centenary Campus Bose Institute P-1/12 C.I.T. Scheme VII-M Kolkata - 700054, India |
E-Mail: | gauri[at]jcbose.ac.in |
Phone: | +91-33-25693258 |
Research:
Publications:
List of Publications:
Published in Peer reviewed journals
1. Chakraborty S, Bhattacharya P, Panda AK, Kajal K & Gaurisankar Sa, & Sa, G. Clonal deletion of anti-tumorogenic IFNghiFOXP3-CD8+ Treg cells confine tumor immunosurvillance. Immunology Cell Biology. doi: 10.1111/imcb.12166. 2018
2. Chakraborty S, Panda AK, Bose S, Roy D, Kajal K, Guha D & Sa G Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Scientific Reports, 7, 1627, 2017
3.
Saha T & Sa G. Constraint-driven
docking: a logistic docking approach for deriving protein-protein complex
structure. Protocol Exchange doi:10.1038/protex.2017.011,
2017
4.
Panda, AK, Chakraborty, D, Sarkar, I, Khan, T &
Sa, G. New insights into therapeutic activity and anticancer properties of
curcumin. J. Experimental Pharmacology, 9, 31-45, 2017
5.
Saha T, Guha D, Manna
A, Panda AK, Bhat J, Chatterjee S, & Sa G. G-actin guides p53 nuclear transport: potential contribution
of monomeric actin in altered localization of mutant p53. Scientific Reports 6, 32626;
doi: 10.1038/srep32626, 2016.
6.
Ray P, Guha D, Chakraborty J, Banerjee S, Adhikary A,
Chakraborty S, Das T & Sa G.
Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death
domain (FADD) proteins to induce apoptosis in colorectal cancer. Scientific
Reports 6, 32979; doi: 10.1038/srep32979, 2016.
7.
Bose, S, Panda AK, Mukherjee S & Sa G. Curcumin and tumor immune-editing: Resurrecting the immune
system. Cell Division, 12;10:6.
doi: 10.1186/s13008-015-0012-z. eCollection, 2015.
8.
Saha T, Kar RK & Sa G. Structural and Sequential
context of p53: A review of experimental and theoretical evidence. Progress
Biophy. Mol. Biol. 117: 250-263, 2015.
9.
Saha S, Bhattacharjee P, Guha D,
Kajal K, Khan P, Chakraborty S, Mukherjee S, Paul S, Manchanda R, Khurana A,
Nayak D, Chakrabarty R, Sa G,
Das T. Sulphur alters NFκB-p300 cross-talk in favour of p53-p300 to induce
apoptosis in non-small cell lung carcinoma. Int.
J. Oncol.
47: 573-582,
2015.
10.
Saha S,
Mukherjee S, Majumder M, Manna A, Khan P, Adhikary A, Kajal K, Jana D, Sa G, Mukherjee S, Sarkar DN and Das T.
Mithramycin A sensitizes therapy-resistant breast cancer stem cells towards
genotoxic drug doxorubicin. Translational Res. 165:
558-577, 2015.
11.
Hossain DM, Panda AK, Chakrabarty
S, Bhattacharjee P, Kajal K, Mohanty S, Sarkar I, Sarkar DK, Kar
SK, Sa G. MEK inhibition prevents tumor-shed TGFβ-induced T-regulatory
cell augmentation in tumor milieu. Immunology 144: 561-573, 2014.
12.
Chakraborty S, Das
K, Saha S, Mazumdar M, Manna A, Chakraborty S, Mukherjee S, Khan P, Adhikary A,
Mohanty S, Chattopadhyay S, Sa G and Das T.
Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18 E6 transcription
through alteration of chromatin histone de-acetylation. J Biol Chem. 289: 29074-29085, 2014.
13.
Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A,
Mohanty S, Nakka KK, Joshi S, De A, Chattopadhyay S, Sa G and
Das T. Inhibition of Epithelial to Mesenchymal transition by E-cadherin
up-regulation via repression of Slug transcription and inhibition of E-cadherin
degradation: Dual role of SMAR1 in breast cancer cells.
J
Biol Chem. 289: 25431-44, 2014.
14.
Chakraborty S,
Adhikary A, Mazumdar M, Mukherjee S, Bhattacharjee P, Guha D, Choudhuri T,
Chattopadhyay S, Sa G and Das T.
Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF
in non-small cell lung cancer to restrain angiogenesis. PLoS ONE 9:e99743.
doi: 10.1371/journal.pone.0099743, 2014.
15.
Chaudhuri S, Singh MK, Bhattacharya D,
Acharya S, Chatterjee S, Kumar P, Bhattacharjee P, Basu AK, Sa G, Das T, Ghosh TK, Chaudhuri S. The
novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key
components of the immunological synapse in favor of T cell activation and
glioma abrogation. J
Neurooncol. 120:19-31. 2014.
16.
Mohanty S, Saha S, Hossain DMS, Adhikary A, Mukherjee S,
Manna A, Chakraborty S, Mazumdar M, Ray P, Das K, Chakraborty J, Sa G
and Das T. ROS-PIASg cross-talk channelizes
ATM signaling from resistance to apoptosis during chemo-sensitization of
resistant tumors. Cell Death Dis. 5:e1021. doi:
10.1038/cddis.2013.534, 2014.
17.
Saha S,
Bhattacharjee P, Mukherjee S, Mazumdar M, Chakraborty S, Khurana A, Nayak D,
Manchanda R, Chakrabarty R, Das T, Sa G. Contribution of the
ROS-p53feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma
cells. Oncol Rep. 31:1589-98,
2014.
18.
Hossain DM, Panda
AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, Saha T, Chakraborty
S, Kar RK, Das T, Chatterjee S, Sa G. FoxP3 acts as acotranscription
factor with STAT3 in tumor-induced regulatory T cells. Immunity. 39: 1057-69, 2013
19. Mukherjee
S, Ghosh S, Choudhury S, Adhikary A, Manna K, Dey S, Sa G, Das T, Chattopadhyay S. Pomegranate reverses
methotrexate-induced oxidative stress and apoptosis in hepatocytes by
modulating Nrf2-NFkB
pathways. J Nutr Biochem 24:2040-50,
doi: 10.1016/ j.jnutbio.2013.07.005, 2013.
20. Mazumdar M, Adhikary A, Chakraborty S,
Mukherjee S, Manna A, Mohanty S, Ray P, Dutta A, Saha S,
Chattopadhyay S, Banerjee S, Chakraborty J, Ray AK, Sa G, Das T. Targeting
RET to induce medullary thyroid cancer
cell apoptosis: An antagonistic interplay between PI3K/Akt/Bad pathway
and death receptor-independent p38-MAPK/caspase-8 pathway. Apoptosis 18:589-604,
doi: 10.1007/s10495-013-0803-0, 2013.
21. Saha S,
Hossain DM, Mukherjee S, Mohanty S, Mazumdar M, Mukherjee S, Ghosh UK, Nayek C,
Raveendar C, Khurana A, Chakrabarty R, Sa G, Das T. Calcarea
carbonica induces apoptosis in cancer cells in p53-dependent manner via an
immuno-modulatory circuit. BMC Complement Altern Med. 13:230,
2013.
22. Saha B,
Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, Das K, Mukherjee S,
Mazumdar M, Lahiry L, Hossain Dewan Md S, Sa
G and Das T. Restoration of tumor suppressor p53 by differentially
regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 31:173-86, 2012
23. Saha S,
Adhikary A, Bhattacharyya P, Das T,
Sa G. Death by
Design: Where Curcumin Sensitizes Drug-resistant Tumours. Anticancer
Res 32:2567-84, 2012.
24. Ghosh S, Adhikary A, Chakraborty S, Nandi P,
Mohanty S, Chakraborty S, Bhattacharjee P, Mukherjee S, Putatunda S,
Chakraborty S, Chakraborty A, Sa G,
Das T and Sen PC. Nifetepimine, a dihydropyrimidone, ensures
CD4+ T cell survival in tumor microenvironment by maneuvering
Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA). J.
Biol. Chem. 287:32881-96, 2012.
25. Hossain DMS, Mohanty
S, Ray P, Das T, & Sa G. Tumor gangliosides and T cells: A deadly
encounter. Frontiers in
Biosciences 4:
502-519, 2012.
26. Hossain DMS,
Bhattacharyya S, Das T, & Sa G. Curcumin: The multi-targeted
therapy for cancer regression. Frontiers in Biosciences 4: 335-355, 2012.
27. Mohanty
S, Adhikary A, Chakrabarty S, Sa G & Das T. Operation
‘p53 Hunt’ to combat cancer: Theaflavins in action. Frontiers in Biosciences
4: 300-320, 2012.
28. Sen GS, Mohanty S,
Hossain DM,
Bhattacharyya
S, Banerjee S,
Chakraborty J,
Saha S,
Ray P,
Bhattacharjee
P, Mandal D,
Bhattacharya
A, Chattopadhyay
S, Das T,
Sa G. Curcumin enhances the efficacy of
chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in
breast cancer. J. Biol. Chem. 286:
42232-42247, 2011.
29. Chakraborty
J, Banerjee S, Ray P, Hossain DMS,
Bhattacharyya S, Adhikary A, Chattopadhyay S, Das T & Sa G. Gain of cellular
adaptation due to prolong
p53 impairment leads to functional switch-over from p53 to p73 during DNA damage in acute myeloid leukemia cells. J. Biol. Chem. 285: 33104-33112, 2010.
30.
Bhattacharyya S, Hossain D Md. S, Mohanty S, Sen GS, Chattopadhyay S,
Banerjee S, Chakraborty J, Das K, Sarkar D, Das T & Sa G. (2010) Curcumin reverses T cell‐mediated adaptive immune dysfunctions in tumor‐bearing host. Cell. Mol. Immunol. 7: 306-315.
31.
Lahiry L, Saha B, Chakraborty J, Adhikary A, Banerjee S, Das K, Sa G & Das
T. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to
induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis
31: 259-268, 2-10
32.
Das
T, Sa G, Saha B & Das K. Multifocal signal modulation therapy of cancer: Ancient weapon,
modern targets. Mol. Cell. Biochem. 336: 85–95, 2010.
33. Sa G, Das T, Moon
C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS, & Finke JH. GD3, an
Overexpressed Tumor-Derived Ganglioside, Mediates the Apoptosis of Activated
but not Resting T Cells. Cancer Research.
69: 3095-3104, 2009.
34. Chattopadhyay
S, Bhattacharyya S, Saha B, Chakrabarty J, Mohanty S, Hossain DMS, Banerjee S, Das K, Sa
G & Das T. Tumor-shed
PGE2 impairs IL2Rgc-signaling to inhibit CD4+ T cell
survival: Regulation by theaflavins.
PLoS One 4:e7382, 2009.
35.
Chatterjee
S, Mookerjee A, Mookerjee Basu J, Chakraborty P, Ganguly A, Adhikary A,
Mukhopadhyay D, Banerjee R, Ashraf M, Biswas J, Das PK, Sa G, Chatterjee M, Das T
& Chaudhuri SK. CuNG, a novel copper complex, modulates drug resistant
tumor associated macrohages to reprogram T cells to elicit anti-tumor response.
PLoS One 4:e7048, 2009.
36. Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S,
Choudhuri T, Mandal D, Bhattacharyya A, Sa G & Das T. Contribution of p53-mediated transcription-dependent pathway in mammary epithelial carcinoma cell
apoptosis by theaflavins. Apoptosis 13: 771-781, 2008.
37. Das T*, Sa G*, Paszkiewicz-Kozik E, Hilston C,
Molto L, Rayman P, Biswas K, Kudo D, Bukowski RM, Finke JH & Tannenbaum C.
Renal Cell Carcinoma Tumors Induce T Cell Apoptosis Through Receptor-Dependent
and Receptor-Independent Pathways. J. Immunol.
180: 4687-4696,
2008. [*Das T & Sa G both
contributed equally]
38. Das T*, Sa G*, Hilston C, Kudo D, Rayman P,
Biswas K, Molto L, Bukowski R, Rini B, Finke JH & Tannenbaum C. GM1 and TNFa, overexpressed in
renal cell carcinoma, synergize to induce T cell apoptosis. Cancer
Research 68: 2014-23, 2008. [*Das T & Sa G both
contributed equally]
39. Sa
G & Das T. Anti-cancer effects of curcumin: cycle of life and death. Cell Div. 3:14, 2008.
40.
Bhattacharyya
S, Mandal D, Saha B, Sen GS, Das T & Sa G. Curcumin prevents
tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction.
J Biol Chem. 282:15954-15964,
2007. [the paper was Press-released by American Society of Biochemistry & Molecular Biology]
41. Mandal D, Bhattacharyya
S, Lahiry L, Chattopadhyay S, Sa G
& Das T. Black tea-induced
decrease in IL-10 and TGF-b of tumor cells promotes Th1/Tc1 response
in tumor-bearer. Nutrition Cancer 58: 213-221, 2007.
42. Raval G, Biswas S,
Rayman P, Biswas K, Sa G, Ghosh S,
Thornton M, Hilston C, Das T, Bukowski R, Finke J & Tannenbaum CS. TNF-α
Induction of GM2 Expression on Renal
Cell Carcinomas Promotes T cell Dysfunction. J Immunol. 178: 6642-6522,
2007.
43. Bhattacharyya S,
Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, Finke JH, Tannenbum CS, Das T & Sa G. Tumor-induced oxidative stress perturbs NFkB activity
augmenting TNFa-mediated T cell
death: Protection by curcumin. Cancer Research. 67: 362-370,
2007
44.
Dasgupta
R, Saha I, Pal S, Bhattacharyya
A, Sa G, Nag TC, Das T &
Maiti BR. Immunosuppression, hepatotoxicity and depression of antioxidant
status by arecoline. Toxicology 227: 94-104, 2006
45.
Biswas
K, Richmond A , Rayman P, Biswas S, Thornton M, Sa G, Das T, Zhang R, Chahlavi A,
Tannenbaum CS, Novick A, Bukowski R & Finke JH. GM2 Expression in renal
cell carcinoma: Potential role in tumor-induced immune dysfunction. Cancer
Research. 66: 6816-6825, 2006.
46.
Mookerjee
A, Mookerjee Basu J, Dutta P, Majumder S, Bhattacharyya S, Biswas J, Pal S,
Mukherjee P, Raha S, Baral RN, Das T, Efferth T, Sa G, Roy S & Choudhuri SK. Overcoming
drug resistant cancer by a newly developed copper chelate through host
protective cytokine mediated apoptosis. Clinical Cancer Research 12:
4339-4349, 2006
47.
Choudhuri
T, Pal S, Das T & Sa G. (2005) Curcumin selectively
induces apoptosis in deregulated cyclin D1 expressed cells at G2 phase of cell
cycle in a p53-dependent manner. J.
Biol. Chem. 280: 20059-20068, 2005. [with front page cover
citing the work]
48.
Sa G, Guo Y & Stacey DW. Regulation of S phase initiation
by p27Kip1 in NIH3T3 cells. Cell Cycle 4: 618-627, 2005.
[with front page cover citing the work]
49. Bhattacharyya A, Lahiry L, Mandal
D, Sa G & Das T. Black tea induces tumor cell
apoptosis by Bax translocation, loss in mitochondrial transmembrane potential,
cytochrome c release and caspase activation. Int. J. Cancer 117: 308-315, 2005.
50. Mandal D, Bhattacharyya A, Lahiry
L, Bhattacharyya S, Sa G & Das T. Tumor-induced thymic involution
via Inhibition of IL-7Ra and its JAK-STAT signaling
pathway: Protection by Black Tea. Int. Immunopharmacol. 6: 433-444, 2005.
51. Pal S, Bhattacharya S, Choudhuri T,
Datta GK, Das T & Sa G. Amelioration of immune cell
number depletion and potentiation of depressed detoxification system of
tumor-bearing mice by curcumin. Cancer
Detection Prevention, 29: 470-478, 2005.
52. Mandal D,
Bhattacharyya A, Lahiry L, Sa G & Das T. Failure in
peripheral immuno-surveillance due to thymic atrophy: Importance of thymocyte
maturation and apoptosis in adult tumor-bearer. Life Sci. 77:
2703-16, 2005.
53. Bandyopadhyay
S, Bhattacharyya A, Mallick A, Sen AK, Tripathi G, Das T, Sa G, Bhattacharya DK & Mandal C. Over
expressed IgG2 antibodies against O-acetylated
sialoglycoconjugates incapable of proper effector functioning in childhood
acute lymphoblastic leukemia. Int.
Immunol. 17: 177-11,
2005.
54. Sa G & Stacey DW.
P27 expression is regulated by separate signaling pathways, downstream
of Ras, in each cell cycle phase. Exp Cell Res 300:
427-439, 2004.
55. Bhattacharyya
A, Mandal D, Lahiry L, Sa G & Das T. Black tea protects immunocytes from tumor-induced apoptosis by
changing Bcl-2/Bax ratio. Cancer Lett 209: 147-154, 2004.
56.
Bhattacharyya A, Chattopadhyay S,
Choudhury T, Banerjee A, Sa G & Das T. Apoptogenic effects of black tea on Ehrlich's ascites carcinoma
cell. Carcinogenesis 24: 75-80, 2003.
57. Sa G, Hitomi M, Harwalkar J, Stacey A, Chen G, & Stacey D.
Ras is active throughout the cell cycle, but is able to induce cyclin D1 only
during G2 phase. Cell Cycle 1,
50-58, 2002. [with front cover page citing the work along with a View and
Commentaries (Cell Cycle 1, 36-38, 2002)]
58. Ghosh S, Bhattacharyya S, Sirkar M,
Sa G, Das T, Majumdar D, Roy S & Majumdar S. Leishmania donovani
suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: Involvement of
extracellular signal-regulated kinase. Infect Immun 70:
6828-6838, 2002.
59.
Das T, Sa G,
Chattopadhyay S & Ray PK.
Protein A-induced apoptosis of cancer cells is affected by soluble immune
mediators. Cancer Immunology Immunotherapy 51: 376-380, 2002.
60.
Choudhuri T, Pal S, Agwarwal ML, Das T & Sa G.
Curcumin induces apoptosis in human breast cancer cells through p53-dependent
Bax induction. FEBS Lett 512: 334-340, 2002.
61.
Chattopadhyay S, Das T, Sa G, & Ray
PK. Protein A-activated macrophages induce apoptosis in Ehrlich's ascites
carcinoma through a nitric oxide-dependent pathway. Apoptosis 7: 49-57, 2002.
62.
Pal S, Choudhuri T, Chattopadhyay
S, Bhattacharya A, Datta GK, Das T & Sa
G. Mechanisms of curcumin-induced
apoptosis of Ehrlich's ascites carcinoma cells. Biochem Biophys Res Commun
288: 658-665, 2001.
63.
Das T, Sa G,
Subbulakshmi V, Subramaniam S, Sen PC, Biswas S & Ray PK. Protein A-activated rat spleenic
lymphocyte proliferation involves tyrosine kinase - phospholipase C - protein kinase
C pathway. Immunopharmacol.
Immunotoxicol. 22: 75-90, 2000.
64.
Ray PK, Das T,
Sa G, Ghosh AK & Chattopadhyay
S. Protection of apoptotic cell death by Protein A. Apoptosis 5: 509-514, 2000
65.
Das T, Sa G
& Ray PK. Mechanisms of Protein A superantigen-induced signal transduction
for proliferation of mouse B cells. Immunol. Lett. 70: 43-51, 1999.
66.
Das T, Sa G,
Sinha P & Ray PK. Induction
of cell proliferation and apoptosis: dependence on the dose of the inducer. Biochem.
Biophys. Res. Commun. 260:
105-110, 1999.
67.
Ghosh AK, Jana S, Das T, Sa G, Mondal N & Ray PK. Protection by Protein A of apoptotic death caused by anti-AIDS
drug zidovudine. Biochem. Biophys. Res. Commun. 264: 601-604, 1999.
68.
Sinha P, Ghosh AK, Das T, Sa G & Ray
PK. Protein A of S. aureus evokes Th1
type response in mice. Immunol. Lett. 67: 157-165, 1999.
69.
Sa G & Das T. Basic FGF
stimulates phospholipase A2, phospholipase C-g1 and
phospholipase D through distinguishable signaling mechanisms. Mol. Cell. Biochem. 198: 19-30, 1999.
70.
Ghosh AK, Sinha P, Das T, Sa G & Ray
PK. S. aureus superantigen Protein A
expand CD4+/CD19+/ CD34+ cells in mice- a potential immunorestorer. Biochem.
Biophys. Res. Commun. 256:
142-146, 1999.
71.
Goenka S, Das T, Sa G & Ray
PK. Protein A induces NO production: Involvement of tyrosine kinase,
phospholipae C and Protein kinase C. Biochem. Biophys. Res. Commun.
250: 425-429, 1998.
72.
Sa G, Murugesan G, Jaye M, Ivashenko Y & Fox PL. Activation
of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein
kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem 270: 2360-2300,
1995.
73.
Sa G & Fox PL. Basic fibroblast growth factor-stimulated
endothelial cell movement is mediated by a pertussis toxin-sensitive phospholipase
A2 activity. J Biol Chem
269:3219-3225, 1995.
74.
Bandhopadhyay AK, Das T, Sa G & Mukherjea M.
Relationship between glycerol 3 phosphate dehydrogenase, fatty acid synthase
and FABP of developing human placenta. J
Biosci 20: 141-150, 1995.
75.
Fox PL, Sa G, Dobrowolski SF & Stacey DW. The
regulation of endothelial cell motility by p21ras. Oncogene 9: 3519-3526, 1994.
76.
Murugesan G, Sa G & Fox PL. High density
lipoprotein stimulates endothelial cell movement by a mechanism distinct from
basic fibroblast growth factor. Circulation
Res. 74:1149-1156, 1994.
77. Sa G & Fox PL. Basic fibroblast growth factor-mediated
migration and proliferation of endothelial cells are distinguished by pertussis
toxin. FASEB
J, 7: 1-2, 1993
78.
Sa G, Das T & Mukherjea M. Characterization and binding
properties of human fetal lung fatty acid binding proteins. Mol. Cell. Biochem. 129: 67-75,
1993
79.
Sa G, Das T & Mukherjea M. The evaluation of lung maturity
by lecithin, L/S and PG/PI ratios in human fetus. Med. Sci. Res. 21: 365-366, 1993.
80.
Das T, Sa G & Mukherjea M. Characterization of
cardiac fatty acid binding protein from human placenta: Comparison with
placenta hepatic proteins. Eur. J.
Biochem. 211: 725-730, 1993
81. Das T, Sa G, Bandhopadhyay
AK & Mukherjea M. Relationship between fatty acid binding proteins, acetyl
CoA formation and fatty acid synthesis in developing human placenta. J. Biosci. 16:235-242,
1991.
82.
Sa G, Das T & Mukherjea M. Relationship between fatty acid
synthesis, transport and total lipid content during human fetal lung development. Indian J. Biochem. Biophys. 27:
43-47, 1990
83.
Sa G, Das T & Mukherjea M. Purification and
characterization of fatty acid binding protein from human fetal lung. Exp. Lung Res. 15: 619-632,
1989.
84.
Das T, Sa G & Mukherjea M. Human fetal liver
fatty acid binding proteins. Role on glucose 6 phosphate dehydrogenase
activity. Biochim. Biophys. Acta
1002: 164-172, 1989.
85.
Das T, Sa G & Mukherjea M. Purification and
characterization of fatty acid binding protein from developing human placenta. Lipids 23, 528-533, 1998.
86. Sa G, Das T & Mukherjea M. Ontogenic profile and properties of glucose-6-phosphate-dehydrogenase in human fetal tissues. Indian J. Biochem. Biophys. 23, 135-137, 1987.
View MoreRecognition:
- Fellow of National Academy of Science (Allahabad), 2016
- Fellow of Immunological Society of Asia-Oceania, 2015
- Fellow of West Bengal Academy of Science & Technology , 2015
- D.P. Burma Memorial Oration Award from SBC(I), 2016
- P.B. Sen Memorial Oration Award from PSI, 2015
Teaching:
Students:
Image | Name | Designation | Department | Campus | Contact number | |
---|---|---|---|---|---|---|
Saikat Dutta | Senior Research Fellow | Division of Molecular Medicine | Centenary | saikat91dt@gmail.com | ||
Sumon Mukherjee | Senior Research Fellow | Division of Molecular Medicine | Centenary | sumonmukherjee999@gmail.com |