UHECRs and Extensive air showers

Ioana C. Mariș

New York University Abu Dhabi

Messenger particles

Some history

- 1909-1910 Theodor Wulf measurements on the Eiffel Tower
- 1907-1911 Domenico Pacini measurements in the sea
- 1912-1914 Baloon experiments: Gockel (4000 m), Hess (5200 m) y Kolhoester (9200 m) \rightarrow radiation comes from above

Air-showers

Pierre Auger

Bruno Rossi

- 1930 Pierre Auger y Bruno Rossi discover air-showers
- 1934 Anderson discoveres the positron, the first antiparticle

Particle accelarators

Large Hadron Collider

International Linear Collider

Energy: 14,000 GeV Radius: 27 km Energy: 500 GeV Length: 30-50 km

Accelerators of cosmic rays

Huge Hadron Collider

Interplanetary Linear Collider

Energy: 14,000,000 GeV Radius: 58,000,000 km Energy: 10,000,000 GeV Longth: 1,400,000,000 km

How do we measure the air-showers?

Telescope Array (Utah, USA)

- Area: 750 $\rm km^2~(\sim 0.25~Auger)$
- 3 Fluorescence Detectors $(30^{\circ} \times 120^{\circ})$
- 507 scintillators, 1.2 km
- Finished in 2008

Pierre Auger Observatory (Malargue Argentina)

- Area: 3000 km²
- 4 Fluorescence Detectors $(30^{\circ} \times 180^{\circ})$
- 1665 Surface detectors
- Taking data since 2004, completed in 2008

Pierre Auger Observatory (Malargue Argentina)

- Area: 3000 km²
- 4 Fluorescence Detectors $(30^{\circ} \times 180^{\circ})$
- I665 Surface detectors
- Taking data since 2004, completed in 2008

Enhancements of the Pierre Auger Observatory

HEAT: High Elevation Auger Telescope

Air showers in Auger

Hybrid Reconstruction

Hybrid Reconstruction

SD Reconstruction

SD Reconstruction

Air showers reconstruction

12 / 47

Data sets at the Pierre Auger Observatory

How is the measurement of the energy spectrum done?

Attenuation in the atmosphere

Method of Constant Intensity

integral cosmic ray flux is isotropic (local coordinates)

$$\frac{d\Phi}{d\Omega} \propto \frac{d\Phi}{d\cos\theta} \propto \frac{dI}{d\cos\theta A_{eff}} = const$$

intensity I (events above E_0) projection on flat array geometry: $A_{eff} = A \cos \theta$

 $\frac{dl}{d\cos^2\theta} = \text{const}$

$S_{ m ground}$: Attenuation in the atmosphere

S_{ground} : Attenuation in the atmosphere

Physical interpretation

 $S_{\text{ground}}(\theta) = N_{\text{e.m.}} S_{\text{e.m.}}(X(\theta)) g_{e.m.}(\theta) + N_{\mu} S_{\mu}(X(\theta)) g_{\mu}(\theta)$

• modeling of the attenuation of air-showers and of the detector response

SD inclined events ($62^{\circ} < \theta < 80^{\circ}$)

- only muonic component, muon density $n_{\mu} = f(x, y | \theta, \phi)$
- energy estimator, N_{19} , proportional to the number of muons and independent of the zenith angle $N_{19}(E, A) = N_{\mu}/N_{\mu}(10^{19} \,\mathrm{eV}, p, \theta)$
- reconstruction of events based on models for the muon density and on the full simulations (systematic uncertainty $N_{19} < 4\%$)

Energy calibration for the surface detector

- Energy calibration with events recorded by both FD and SD
- High quality events (+ fiducial field of view)

Calibration functions: $E = A \cdot S^B$

- SD 1500 m: $A = (0.187 \pm 0.004) \text{ EeV}$ $B = 1.023 \pm 0.007$
- SD inclined:
 A = (5.71 ± 0.1) EeV
 B = 1.01 ± 0.02
- SD 750 m: $A = (12.87 \pm 0.6) PeV$
 - $B\,=\,1.013\pm 0.013$

SD energy resolution, 1500 m

obtained from the golden hybrid events

- shower-to-shower fluctuations $\approx 10\%$
- $\bullet\,$ reconstruction uncertainties 12% at 3 EeV and 6% above 10 EeV
- corrections for resolution effects with a forward folding procedure

Resolution correction through forward folding

 $J_{\rm meas} = \mathbf{P}^{-1} \cdot \mathbf{R} \cdot \mathbf{P} J_{\rm true}$

trigger efficiency P, response matrix R (air-showers and detector simulations)

Hybrid exposure

Detector fully efficient above 1 EeV

Relative difference to mixed composition

Cross-check with SD data

Energy systematics

Emission mechanism	Absolute fluorescence vield	3.4%	
Atmosphere	Fluores. spectrum and quenching param.	1.1%	
	Sub total (Fluorescence Yield)	3.6%	14%
Calibration	Aerosol optical depth	3% ÷ 6%	
	Aerosol phase function	1%	
Reconstruction \rightarrow energy systematic uncertainty 14%	Wavelength dependence of aerosol scattering	0.5%	
	Atmospheric density profile	1%	
	Sub total (Atmosphere)	3.4% ÷ 6.2%	5.1% ÷ 7.6%
	Absolute FD calibration	9%	
	Nightly relative calibration	2%	
	Optical efficiency	3.5%	
	Sub total (FD calibration)	9.9%	9.5%
	Folding with point spread function	5%	
	Multiple scattering model	1%	
	Simulation bias	2%	
	Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%	
	Sub total (FD profile reconstruction)	6.5% ÷ 5.6%	10%
	Invisible energy	3% ÷ 1.5%	4%
	Statistical error of the SD calib. fit	0.7% ÷ 1.8%	
	Stability of the energy scale	5%	

TOTAL

22%

14%

Combined energy spectrum

 $\gamma_1 = 3.29 \pm 0.02 \pm 0.05, E_{tr}[eV] = 4.82 \pm 0.07 \pm 0.8$ $\gamma_2 = 2.60 \pm 0.02 \pm 0.1, E_s[eV] = 42.09 \pm 1.7 \pm 7.61$

Comparison with other experiments

energy systematic uncertainties important

Overview of the spectral features

energy systematic uncertainties important

Mass composition: Cascade development

Air-showers induced by: photons or hadrons Electromagnetic part: Heitler model Hadronic part: Mathews-Heitler model

HeCo (HEAT+CO): extended field of view

HeCo (HEAT+CO): extended field of view

Mass composition with FD

- heavier particles develop higher in the atmosphere, with less fluctuations
- X_{max} and RMS(X_{max}) the most sensitive parameters to chemical composition

Mass composition with FD

- heavier particles develop higher in the atmosphere, with less fluctuations
- X_{max} and RMS(X_{max}) the most sensitive parameters to chemical composition

Mass composition with FD

- heavier particles develop higher in the atmosphere, with less fluctuations
- X_{max} and RMS(X_{max}) the most sensitive parameters to chemical composition

Moments of X_{max} distributions

systematic uncertainties $<10 \text{ g/cm}^2$ and resolution $<25 \text{ g/cm}^2$

elongation rate changes: $86.4 \pm 5(stat)^{+3.8}_{-3.2}(sys)g/cm^2/decade$ to $26.4 \pm 2.5(stat)^{+7}_{-1.9}(sys)g/cm^2/decade$

Full distributions

Distributions become narrow at the highest energies

Full distributions

Using simulation templates and full distributions fits one can obtain the fractions of individual elements

Mass fractions

Photon limits

Photon searches

- steep lateral distribution function
- slow risetime of the signals
- large curvature of the shower front
- deep X_{max}

Current limits exclude exotic, super-heavy relic models

Neutrino limits

Neutrino searches

- particles that traverse the Earth (Earth-skimming)
- particles that traverse the Andes (down-going)
- interaction just above the detector
- very young air-showers

Cosmogenic neutrinos with an assumption of pure p composition at the source are disfavoured

Number of muons versus X_{max}

10 EeV, 38 degrees

Muons may even outperform X_{\max} at the highest energies!

 $X_{\rm max}$ from SD: on ground, for a fixed energy, age, and geometry the lateral distribution functions (LDF) are universal

Key features of the upgrade

- 1) New electronics for the Surface Detector
 - $\rightarrow\,$ faster sampling, larger dynamic range, better triggers
- 2) Enhanced muon measurements with the Surface Detector Two options (out of five) under study
 - a. vertical segmentation of the tanks
 - b. add scintillator on top of the tanks (winning project)
- 3) Extended operation of the Fluorescence Detector
 - ightarrow may double observation time
- 4) Array with shielded muon detectors
 - \rightarrow energy range 1-10 EeV, O(100 km²)
 - a. scintillators shielded by tank and concrete
 - b. scintillators shielded by 1.5 m of soil

LSD: Layered surface detector

3 top PMTs 1 bottom PMT

- separation: 40/80 cm
- use known interaction characteristics of γ/e^\pm and μ^\pm
- obtain the muonic and em signal through a simple matrix inversion

(Letessier-Selvon et al., NIM A767 (2014))

LSD: Muonic and electromagnetic signals

39 / 47

Guapa Guerrera, born on 26th of February

LSD prototype results

Enhanced Muon Counting: ASCII

 \rightarrow 1cm thick scintillator on top of the tank

ASCII performances

Thank you!

