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Abstract

Bacteriophages are more abundant than any other organism on our planet. The inter-
action of bacteriophages and bacteria and their coevolution is well known. In this
chapter, we describe various aspects of modeling such systems and their dynamics.
We explore their interaction in: (i) liquid media, which leads to well-mixed populations
and (ii) solid media, where their interaction is spatially restricted. Such modeling,
when used in conjunction with experiments would not only shed deep insight into
the underlying dynamics but also provide useful clues toward potential therapeutic
applications.

1. THE BACTERIA–PHAGE INTERACTION

Bacteriophages, often simply referred to as phages, are perhaps the most

abundant and ubiquitous, infectious acellular entities on this planet. Phages are

viruses, which need specific bacterial cells to replicate and proliferate. Struc-

turally, like other viruses, bacteriophages are composed of nucleic acids as their

core genetic material with an envelope, which is constituted of different types

of proteins and glycoproteins. The nucleic acid within a phage particle can be

either DNA or RNA. Some unusual features, observed in the genome of a

phage like modified bases, help these phage particles in protecting themselves

from the defense mechanism of the host. The replication cycle of a DNA

virus is much simpler than anRNAvirus.Outside the host cell, phage particles

appear to behave like nonliving entities, which are unable to reproduce. The

typical size of a bacteriophage may vary between 20 and 200nm in length

with a great variety in shapes and in the capsid symmetry—ranging from ico-

sahedral to helical. Phage distributions depend on the distribution of their

hosts. As phages need hosts for their replication, their numbers depend on

the host cell density in the environment. The maximum number of phages

is found in the marine ecosystem. Interestingly, the estimated aggregate num-

ber of phage particles on the earth is higher than every other organism on the

planet (Mc Grath & van Sinderen, 2007).
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1.1 Discovery of Bacteriophages: A Brief History
It was not till the second decade of the 20th century that existence of phages

was clearly uncovered. The first unambiguous mention of bacteriophages

in line with the conception that we have of them today can be traced to

the French-Canadian microbiologist Felix d’Herelle (d’Herelle, 1917) who

worked at the Pasteur Institute in Paris. d’Herelle also demonstrated the

therapeutic potential of bacteriophages. Indeed he was the one who coined

the name bacteriophage (literally bacteria eater), where phage originates

from Greek and means “to eat” or “devour.” This is especially remarkable

given that the autodidact d’Herelle had to face prolonged and significant

opposition from some of the powerful scientific minds of his time as well

documented in literature (Duckworth, 1976; Summers, 2012).

Before this, however, Ernest Hanbury Hankin reported about unknown

things in the river waters of Ganga (Ganges) and Jumna (Yamuna) in

India, which could pass through fine porcelain filters and, possessed notable

antimicrobial or antibacterial properties especially against cholera (Hankin,

1896). The results seem to be widely known at that time and even find a

mention in Mark Twain’s famous travelogues (Twain, 1897). However,

recent works (Abedon, Thomas-Abedon, Thomas, & Mazure, 2011) have

raised serious doubts about Hankin’s study being an early observation of

effective phage-mediated antibacterial activity.

Frederick Twort should be credited for coming tantalizingly close to

clearly discovering bacteriophages (Twort, 1915). His investigations led

him to discover a small agent that infected and killed bacteria. However,

apart from identifying it as a virus that grew on and subsequently killed

the host bacteria, he also proposed the following two additional possible cau-

ses to explain his observations. These were: (a) a step in the life cycle of the

bacteria or (b) an enzyme created by the bacteria themselves.

Alternate and indeed views orthogonal to d’Herelle were nurtured by

many other scientists, most prominently by the Nobelists Jules Bordet

and John Northrop, who hypothesized that these antibacterial or antimicro-

bial agents were inanimate chemicals or enzymes, that were already present

in bacteria, and only initiated the activity of similar proteins, destroying

the bacteria in the exercise. However, subsequent electron microscopy

studies (Ruska, 1940) conclusively settled the debate in favor of d’Herelle.

Unfortunately, d’Herelle died of cancer in 1949 and as a nearly forgotten

man. He never won a Nobel Prize in spite of being nominated for it

28 times.
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1.2 Lytic and Lysogenic Cycle
The life cycle or more precisely the reproduction cycle of a phage particle

solely depends on its host bacterium. Broadly, the replication cycle of a

bacteriophage could be of two types—lytic or lysogenic. Most of the phages

are lytic phages. There are few phages called temperate phages that possess a

unique ability to induce lysogenic cycle from the lytic cycle in some partic-

ular situations. The mechanism and the evolution of lysogenic cycle are

much more complicated than that of the lytic cycle. The lytic cycle is a

simple replication cycle comprised of five steps—attachment, penetration,

replication, packaging, and burst out. The specificity of every step varies

between different types of phages. Attachment of a phage particle on a host

surface depends on some specific receptors on the host surface. Once a stable

binding is achieved, a cascade of reactions initiates the process by which a

phage particle inserts its genetic material inside the host cell. This procedure

is followed by the replication and synthesis of various kinds of phage proteins

depending on the type of genetic material of the phage (Weinbauer, 2004).

Phage particles having a double-stranded or single-stranded DNA use the

host machinery to reproduce their genetic material and other structural pro-

teins. On the other hand, some of theRNA phages like retroviruses replicate

their genetic material via DNA intermediate by using RNA-dependent

DNA polymerase. Depending on the sense of their genome, other RNA

phages replicate without forming DNA intermediate. Before replication

of their genetic material and production of the structural proteins, phage

particles extensively regulate host metabolic reactions. Subsequently, the

formation of a new phage particle by the nascent structural proteins begins

with the proper packaging of appropriate genetic material in it. This process

varies from one phage to another and depends on the concatemeric sequence

of the phage genome. This is followed by the release of new phage particles

outside the host cell. On the other hand, in temperate phages, some particular

conditions lead to lysogeny. In lysogeny, the genome of a phage particle gets

integrated with the host chromosome at some special sites called attachment

sites—after its insertion inside the host cell. After integration, the phage genome

multiplies within the host genome with every cell division. This integrated

version of phage genomewithin the host genome is called prophage. This lyso-

genic conversion occurs under certain conditions like low host cell density,

low nutrient availability, etc. If the host cell density is low, the newly released

phage particles will hardly find any uninfected host cell for a new infection.

When suitable conditions—like an increase in the number of host cells or
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removal of limitations on the amount of nutrients, arise again in future the

prophages move their genome out of the host genome and replicate within

the host cells for production of new phage particles. At this time it is very

easy for newly formed phage particles to find an uninfected cell after release

(Bertani, 2004). The lytic and lysogenic phage cycles are depicted in Fig. 1.

1.3 Adsorption Rate
There are various types of receptors present on the bacterial cell surface,

where phage particles are adsorbed. The chemical nature of these receptors

could vary from one species of bacteria to another as well as from one type

of phage to another. The specificity of the bacteriophage and the host is

primarily due to the uniqueness of the interaction of the phage with the

host receptor. Modification of the host receptor is also responsible for

phage-resistance property of the host cell (Etz, Minh, Schellack, Nagy, &

Meinke, 2001; Labrie, Samson, & Moineau, 2010). Depending on the type

of phage, the biochemical nature of the receptor molecule would also vary

as can be observed from Fig. 2.

In phages T2 and T6 of Escherichia coli, receptors are mainly protein

motifs—but in case ofT3,T4, andT7, receptorswith lipopolysaccharide com-

ponents have been found (Randall-Hazelbauer & Schwartz, 1973). On the

other hand, there are various types of receptors for Salmonella phages ranging

from proteins like OmpC to flagella (Shin et al., 2012). The number of recep-

tors on the surface of host cells or the receptor density varies from host to host

and also depends on the growth medium of the host cell (Schwartz, 1976).

Fig. 1 Lytic and lysogenic cycle of phage.
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A successful attachment of a particular bacteriophage with a particular

receptor molecule on its host surface is a complex event guided by chance

and depends on various types of parameters. It is dependent upon: (a) the

affinity of the phage to irreversibly bind with the receptor, (b) the rate of

diffusion of phage particles in the infection medium, and (c) the size of

the host cells (Hyman & Abedon, 2009; Kropinski, 2009). An adsorption

event can be quantitatively parameterized and can be expressed in terms

of the adsorption rate constant. The adsorption rate is the probability of a

phage particle to be irreversibly adsorbed on its host bacterium in unit vol-

ume of infection medium per unit time. This parameter is quantitatively

expressed in units of mL per minute or mL per hour.

Mixing the appropriate amount of phages with its host bacteria in a suit-

able infection medium provides us a way for the experimental determination

of phage adsorption rate. Mathematically, it is represented by the following

equation:

N ¼
� ln

P

P0

� �
kt

(1)

Here, P0 and P are the phage densities at the beginning and at the end

of the incubation of infection, respectively. N represents the initial host

cell density and t the incubation time. The adsorption rate constant is

Fig. 2 Phage adsorption on various receptors.
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represented by k. Fig. 3 shows a typical plot of the number of free phages,

plotted with time. The adsorption rate constant, k, is obtained from the plot

in Fig. 3 as:

k¼�slope

N
(2)

1.4 Multiplicity of Infection
The multiplicity of infection or MOI represents the ratio of the numbers of

virus particles to the numbers of the host cells in a given infection medium.

A value of MOI¼1 implies that on an average there is a single host cell

for a single phage particle. However, in reality there can be multiple phage

particles adsorbed on a single host cell, while some of the host cells might

remain uninfected. The infection of a host cell by a phage particle is a chance

event and can be statistically represented by the Poisson distribution (Ellis &

Delbr€uck, 1939). Let us denote an arbitrary value of MOI by x. A bacterial

population will be infected by phages such that the probability of a bacte-

rium to be infected by y virus particles is denoted by:

P yð Þ¼ xye�x

y!
(3)

So, for x¼1, P(y) decreases as y increases. Therefore, the probability of a

host bacterial cell to be infected by one phage particle at MOI equal to one is

Fig. 3 Phage adsorption kinetics.
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about 36.79%. Similarly, it can be calculated that the probability of a host

bacterial cell to be infected by two or three phage particle at the same

MOI is 18.39% and 6.13%, respectively.

1.5 One-Step Growth Curve
When a phage population in an infection medium infects a bacterial popu-

lation, a chain of events is induced. New phage particles that are synthesized

from an infected host cell can in turn infect other uninfected yet susceptible

hosts. This sequence of events continues until a good number of these uni-

nfected yet susceptible host cells are present in the infected medium. One

round of the infection cycle is described as a characteristic one-step growth

curve of bacteriophages, which is shown in Fig. 4.

Experimentally, the one-step growth curve can be obtained by diluting

the mixture of phages and host bacterial cells—after adsorption of phages by

the bacteria or by addition of substances that inhibit new infection (Ellis &

Delbr€uck, 1939). It is obtained by plotting the numbers of free phages vs

time. For a particular host and phage particle in a specific set of growth con-

ditions and infection medium, the time taken for new phage particles to be

released after successful adsorption is referred to as the latent period. There is

another parameter called burst size, which is defined as the number of phage

particles released from a host cell after a successful infection. In a one-step

growth curve, we observe a sharp rise in free phage count, after the latent

period. This increase of phage count is primarily due to the result of sequen-

tial bursting out of infected cells and release of the newly formed phage

particles.

Fig. 4 One-step growth curve.
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1.6 Phage Therapy
The emergence of antibiotic-resistant strains of life-threatening pathogenic

microbes like Mycobacteria and Salmonella necessitates the use of other kinds

of agents rather than employing the widespread practice of administration of

antibiotics. In fact, the development of new antibiotics has also slowed down

remarkably in the last few decades for a number of reasons. It is especially in

the backdrop of these events that phage therapy presents a really promising

alternative (Matsuzaki, Uchiyama, Takemura-Uchiyama, & Daibata, 2014;

Reardon, 2014). Here, phage therapy implies the therapeutic use of phages

as antibacterial agents. With the discovery of bacteriophages in 1917 along

with the demonstration of their remedial potential, phage therapy was a sub-

ject of research over a period of about a decade and a half. However, the

development of penicillin by Sir Alexander Fleming around 1928 severely

impacted the ongoing research in this arena. Consequently, it remained out

of vogue for a period of nearly 50 years—accelerated in no less measure by

the outbreak of the Second World War. However, in certain areas of the

erstwhile Union of Soviet Socialist Republics (USSR), notably in Georgia,

various basic and applied (therapeutic) aspects of research on phages were

practiced in quite some detail over the next few decades. Unfortunately,

this body of research remained largely unrecognized and indeed somewhat

unnoticed, perhaps also because the relevant yet countercurrent publications

were not in English (Stone, 2002; Sulakvelidze, Alavidze, & Morris, 2001).

At that time, most of the developed world was busy with developments in

phage-based molecular biology techniques rather than the therapeutic aspects

of phage administration. After that the importance of phage therapy was

reemphasized by the work of Smith andHuggins (1982). The recent spotlight

on the emergence of various antibiotic-resistant microbial strains and the huge

health risks posed by them have led to some truly important developments in

phage therapy, over the last decade.

A phase I safety trial of phage therapy for skin ulcers was approved and

completed by the United States Food and Drug Administration in 2008

(Abedon, Kuhl, Blasdel, & Kutter, 2011). There have also been some success-

ful trials for phage therapy for specific disease like cholera and infections with

Pseudomonas aeruginosa and Staphylococcus aureus (Abedon, Kuhl, et al., 2011).

Phage therapy has been shown to be effective against infection by Mycobacte-

rium ulcerans in a murine footpad model (Trigo et al., 2013). Phage therapy

is also known to be potentially effective in protecting honeybee larvae from

American Foulbrood disease (Ghorbani-Nezami, LeBlanc, Yost, & Amy,

2015). Bacteriophage application has the potential to control water
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contaminated with Shigella (Jun et al., 2016). In aquaculture, several examples

of bacteriophage remediation of bacterial pathogens exist (Richards, 2014).

A schematic representation of various aspects of phage therapy is shown

in Fig. 5.

Phage therapy offers various advantages over antibiotic treatment in

many scenarios. First and foremost, the target specificity and precision of

phage therapy is much higher than that of treatment with antibiotics. Anti-

biotics are not designed to kill merely the pathogenic bacteria at the target

sites. At any prime antibiotic target site like the human gut there are various

types of healthy flora also present. Apart from killing the pathogenic bacteria

in the gut, antibiotics would also simultaneously target beneficial bacteria—

which are rather crucial for maintaining healthy metabolism inside our intes-

tine. However, bacteriophages being far more specific toward their target

would in all likelihood destroy only the targeted pathogenic bacteria. The

adopted route of administration is also a crucial factor during antibiotic

use. So except tropical use, the antibiotics are delivered to the target sites

mainly via the blood stream. So the amount of antibiotics consumed is usu-

ally larger than specifically required. They are also metabolized and leave the

human body, so we need to take them at regular intervals. On the other

hand, phages could multiply themselves at the target sites and are generally

accompanied with minimal side effects (Cisek, Dąbrowska, Gregorczyk, &

Wyzewski, 2017).

Fig. 5 Phage therapy.
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1.7 Bacteria–Phage Coevolution
In the evolutionary run, the host bacterial cells try to evolvemechanisms that

can resist phages. In their own defense phage particles also continually evolve

new strategies for infecting the host bacteria, as a response. Extensive discus-

sions on the general subject of bacteria–phage coevolution began at the turn
of the last century in microbiology and were subsequently initiated in evo-

lutionary biology, ecology, and other areas of theoretical biology. Bacteria–
phage system is a good example of a system reflecting complex dynamics

between the participants throughout the duration of interaction. One of

the major problems in studying phages is to maintain their culture in the

laboratory. Host cells also need to be cultured at the same time. As many

of the bacteria are not amenable to being cultured in the laboratory, our

knowledge of bacteria–phage competition and coevolution is somewhat

limited. Such antagonistic coevolution is not so uncommon in nature.

It can be observed in various places ranging from the human gut to the soil.

It affects the microbial diversity in any type of environment to a great extent.

Sometimes phages outnumber the population of their hosts, but most of

the time they maintain a balance. Among various types of phage-resistant

systems in bacteria, a newly discovered system is the CRISPR–CAS system
(Barrangou et al., 2007). CRISPR stands for clustered regularly interspaced

short palindromic repeats. Even this CRISPR system has also been an-

tagonized by phage genes that can deactivate the CRISPR–CAS system

(Bondy-Denomy, Pawluk, Maxwell, & Davidson, 2013).

1.8 Modeling Bacteria–Phage Interactions
As we discussed earlier, huge diversity is present in bacteria–phage interac-
tions throughout nature. Naturally, it is not at all theoretically easy to com-

prehensively model such systems. Broadly, bacteria–phage interactions

could be classified into two types depending upon the nature of the medium.

In media with low viscosity like oceans, ponds, or rivers, which are rather

abundant in nature or even in laboratory media like liquid broth—bacteria–
phage interactions behave as a well-mixed population subject to minimal

spatial limitations. On the other hand there are certain media, which possess

high viscosity—examples of which are soil, tissue, solid agar media, and so

on. In such scenarios, bacteria–phage interactions have spatial limitations

and are not well mixed at any point of time during which they interact.

Therefore, while modeling bacteria–phage interactions in media with low

viscosity, the dependence of dynamics upon space is rather limited.
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However, in highly viscous media, the resultant dynamics depends highly

on the spatial constitution of the media.

In less viscous media, bacteria–phage interactions could be modeled as a

set of ordinary differential equations (ODEs) or delay differential equations

(DDEs). These differential equations would involve relations between the

number/concentration of phages, infected bacteria, and uninfected yet sus-

ceptible bacteria and their derivatives with respect to time. Usually, param-

eters are also found in such relations involving two or more variables in these

differential equations. In the present context parameters would be quantities

like adsorption rate, growth rate, burst size, latent period, and so on. These

systems can also be modeled using Monte Carlo simulations, which involve

repeated, random, and exhaustive sampling from the space of all possible

events.

On the other hand, in highly viscous media, bacteria–phage interactions
are strongly dependent upon the spatial structure of the medium. Therefore,

to model this system a series of reaction–diffusion equations could be

employed where the phage and bacterial growth constitute the source terms,

while phage diffusion in viscous media is captured by a diffusion term (Yin &

McCaskill, 1992). It could also be modeled via cellular automata approach,

where a grid of cells with changeable states evolves under some specific rules

(Wei & Krone, 2005). A mathematical model of bacteria–phage interaction
with immune response in the chemostat has also been recently formulated

(Wang, 2017). Various aspects of modeling are shown in Fig. 6.

Fig. 6 Various aspects of modeling bacteria–phage interactions.
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2. MATHEMATICAL MODELING

As aforementioned, the possibility of exploiting the infectious nature

of the phages and using them as therapeutic agents against their host cells has

generated renewed interest in host phage interactions. Therefore, various

ingenious mathematical models provide us with an essential tool to under-

stand the complex dynamics of bacteria–phage interactions. Computer sim-

ulations are also often employed in such studies of bacteria–phage interaction
dynamics. Such modeling can shed significant insight and lead to interesting

predictions, which could be useful in phage therapy. Almost all the models

are based on the population dynamics of phages that are subject to the lytic

cycle only and are usually deterministic in nature. A number of such models

are based on the population dynamics of prey–predator models and epidemi-

ological infection models. It is very helpful and instructive to obtain the basic

parameters used in mathematical modeling from the experimental data

obtained under controlled conditions in the laboratory. The extraction of

parameters from experimental data may provide valuable clues toward under-

standing the characteristic kinetics of bacteria–phage interactions, in much

more complex setups.

2.1 Differential Equations
A differential equation is used to mathematically define the relation between

a given function and its derivatives. Differential equations involving deriva-

tives of quantities with respect to time are often used to describe dynamical

systems, especially when the interest lies in studying the evolution of such

systems with time. While modeling dynamical systems, the derivative usually

represents the rate of change of a variable of the system under consideration.

In general, real-world systems are usually quite complex in nature and it

is naturally impossible to model them taking all their details into account.

Construction of equations governing the dynamical behavior of a given sys-

tem requires framing proper mathematical equations involving the relevant

variables and parameters. For example, in bacteria–phage dynamics—the

number of infected host cells, free phage particles, and uninfected yet sus-

ceptible bacterial cells are considered as variables. Parameters are part of the

relations involving two or more variables in an equation. In the present con-

text, parameters would be quantities like growth rate, burst size, adsorption

rate, latent period, and so on.
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Inclusion of too many variables or values to be calculated, while con-

structing the equations to describe a system—might render the equations

very hard to solve analytically. Therefore, the main idea behind modeling

a system is to construct a minimum set of equations using variables and

parameters that describe the physical system completely or at least to a fair

approximation. At the same time it should be enough to capture the essence

of the dynamics of the system. If the data obtained by the set of equations are

in “good” agreement with the experimentally measured data, then predic-

tions drawn from the model could successfully point toward the behavior of

the system at longer timescales. In case the modeled equations result in pre-

dictions, which are far from actually observed behavior—the equations

should be modified and rewritten with increased rational and practical rea-

soning. It is very important to note here that approximations and simplifi-

cations could greatly help in getting analytically tractable solutions for many

if not most models. However, such analytically obtained solutions should

obviously be checked against real experimental data. Differential equations

can be classified into various types such as ordinary differential equations

(ODEs), partial differential equations (PDEs), and delay differential equa-

tions (DDEs). While ODEs contain derivatives which depend upon the

value of a function at the present time, DDEs are a type of differential equa-

tions in which the derivative of a function at any given point of time, t, is

dependent upon the value of the function at a time prior to t and not merely

upon the current time, t. A DDE can be written as:

x0 tð Þ¼ f t, x tð Þ, x t� τ1ð Þ, x t� τ2ð Þ,…, x t� τkð Þð Þ, (4)

where time delays τ1, τ2, and τk are positive constants. Also, for ODEs, the

value of the function at initial point, say t¼ t0, is sufficient to determine its

solution, whereas DDEs require the “history” of the system, i.e., solution at

time points prior to the initial time points, τ1, τ2,…, τk along with the solu-
tion at the initial point t0 (Shampine & Thompson, 2001). Thus, DDEs are

sometimes considered to be more realistic than ODEs where the dynamics

of a system is only based upon the current state of the variables.

In population dynamics, the time involved in biological processes such as

gestation, maturity, or time to be able to reproduce plays a very crucial role.

Such scenarios are quite common in real-world systems. For example, in a

prey–predator model, the birth rate of predators may depend upon both

current and the previous number of predators and preys. Thus, a DDE

provides a rather effective way to model and successfully gain significant

insights on the dynamics of a system.
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DDEs can be solved numerically, and the most popular approach is to use

explicit Runge–Kutta methods. A number of DDE solving programs and

packages are also available presently. A few of the commonly used ones

are dde23 in MATLAB® (Shampine, 1994), DDE solver for FORTRAN

90 and FORTRAN 95 (Thompson & Shampine, 2006) and pydelay in

python (Flunkert & Schoell, 2009).

2.2 Basic Model for Bacteria–Phage Interactions
The paper by Campbell (1961) was among the first to introducemathematical

modeling using DDEs toward understanding the kinetics of bacteria–phage
interactions. Campbell modeled the bacteria–phage population dynamics

under chemostat-like conditions as interacting populations of susceptible uni-

nfected bacteria, S, and free phage, P, which he related as:

_S tð Þ¼ αS tð Þ 1�S tð Þ
C

� �
�kS tð ÞP tð Þ� aS tð Þ (5)

_P tð Þ¼ bkS t�τð ÞP t� τð Þ�μpP tð Þ� aP tð Þ (6)

Here, susceptible bacterial cells grow at a constant rate α with the carry-

ing capacity of bacterial population being C. It should be noted that the

infection of bacterial cells occurs by irreversible adsorption of free phage par-

ticles in susceptible bacterial cells at rate “k” and is treated according to the

principle of mass action. This principle alludes to the fact that in a well-

mixed population the rate of contact of two groups is proportional to the

product of population size of both the groups concerned. Susceptible bac-

teria as well as free phages are removed from the system at a constant flow

rate, a. Thus, Eq. (5) gives the change in susceptible bacterial concentration.

The phage kinetics is somewhat more complicated as infected cells are lysed

after a fixed latent period τ, i.e., at a time, τ, after infection—resulting in an

average release of b new phage particles per infected cell, with b being

referred to as the burst size. μp denotes the rate of spontaneous inactivation
of phage particles, and the overall equation for phage concentration is given

by Eq. (6). The effect of growth rate of phages on the population of phages

and bacteria was observed using this model. It was shown that a slow growth

rate of phages leads to dying out of the phage particles, whereas a rapid

growth rate of phages maintains bacteria at a low nonzero level along with

the phages. Further, the effect of phage survival in competing host environ-

ment was also studied. In this case, the bacterial population does not die out

as phages continue to survive by simply choosing the “best-adapted” out of
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the population of competing hosts. The above model was further extended

by modeling bacteria–phage dynamics as three interacting populations—

susceptible uninfected bacteria, S, infected bacteria, I, and free phages,

P (Levin, Stewart, & Chao, 1977). They also considered a model with two

preys and one predator and studied the stable states of coexistence for each

of the two preys and also the sole predator in the heterogeneous population.

2.3 Resource Concentration Factor
Lenski and Levin (1985) incorporated an additional state r for resource con-

centration in their host phage model in a chemostat to study the dynamics of

bacteria–phage interactions built with a view to gain insight into evolution-

ary constraints for coexistence of E. coli bacteria and virulent phage. Their

model is described as follows:

_r tð Þ¼D r0� r tð Þð Þ�α rð ÞεS tð Þ (7)

_S tð Þ¼ α rð ÞS tð Þ�kS tð ÞP tð Þ�DS tð Þ (8)

_I tð Þ¼ kS tð ÞP tð Þ� e�DτkS t� τð ÞP t� τð Þ�DI tð Þ (9)

_P tð Þ¼ be�DτkS t� τð ÞP t� τð Þ�kS tð ÞP tð Þ�DP tð Þ (10)

Here, α(r) denotes the growth rate of uninfected bacteria, while ε is the
amount of resources consumption by a new bacterium. The bacterial pop-

ulation as well as the phage population is washed out of the system at a con-

stant rateD. The fraction of bacteria that was infected τ time ago but has not

yet been washed out of the system and is denoted by e�Dτ. The interpreta-

tion of the remaining parameters is the same as the previously described

model. This model is based over the following assumptions, namely: (1)

infected cells cannot be infected again and (2) infected cells can neither grow

nor use resources.

2.4 Phage Resistance in Bacteria
It has been observed that phage adsorption depends upon the number of

receptors on the bacterial cell wall (Berg & Purcell, 1977; Moldovan,

Chapman-McQuiston, & Wu, 2007). To incorporate these findings,

Chapman-McQuiston andWu (2008) introduced heterogeneity in bacterial

population depending upon their response to phage infection while studying

the population dynamics of E. coli bacterium and λ-phage. Bacteria with the
same number of receptors possess same sensitivity to phage infection. Thus,

bacterial population was divided into subpopulations Bn, where 0<n<Nmax
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depends upon the number of phage receptors, n. Each subpopulation consists

of sensitive cells, Sn, and infected cells, In, with adsorption coefficient γn. The
model is given as:

_Sn tð Þ¼ αSn� γnPSn +
XNmax

m¼0

0αmnSm�
XNmax

m¼0

0αmn

 !
Sn (11)

_In tð Þ¼ γn+1 Sn+1 + In+1ð ÞP� γnInP� εIn (12)

_P tð Þ¼mP t� τð Þ
XNmax

n¼0

γnSn t� τð Þ�P
XNmax

n¼0

γn Sn + Inð Þ (13)

Partitioning of receptor cells due to cell division leads to switching

between the subpopulations and is represented by αmn, which denotes the

switching rate from subpopulation n to subpopulation m. The prime symbol

in the summations denotes exclusion of the case when m¼n. The growth

rate for all bacterial subpopulations is assumed to be identical. Incorporation

of population heterogeneity improves fitness of the bacterial populations

against phage infection and thereby makes it possible for the bacterial pop-

ulation to persist under strong phage pressure.

Cairns, Timms, Jansen, Connerton, and Payne (2009) introduced bac-

terial mutation rate denoted by f, thus assimilating phage-resistant bacteria,

R into the model system given by:

_S tð Þ¼ αS tð Þ� fS tð Þ�kS tð ÞP tð Þ (14)

_R tð Þ¼ αR tð Þ+ fS tð Þ (15)

_I tð Þ¼ kS tð ÞP tð Þ�kS t� τð ÞP t� τð Þ (16)

_P tð Þ¼ bkS t� τð ÞP t� τð Þ�kS tð ÞP tð Þ�μpP tð Þ (17)

Unlike, the models mentioned earlier—here, the growth factor, α,
accounts for both replication and phage-independent bacterial cell death.

The following assumptions have been made in the concerned model system:

(1) resistant bacteria are totally resistant to phages and once resistance is

acquired—it cannot be lost and (2) sufficient concentration of resources is

available so as to avoid competition between susceptible and resistant bac-

teria. Here, it was shown that for the decline in susceptible bacteria popu-

lation, the free phage population must exceed a minimum threshold called

the inundation threshold. On the other hand, only when the susceptible bac-

terial population exceeds a given threshold, namely, proliferation threshold—

the phage population rises in number.
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Han and Smith (2012) modeled the dynamics of phage-sensitive (S) and

phage-resistant (M) bacteria to understand persistence and extinction of

bacterial strains and phages in a chemostat. The cost of resistance to phage

infection was included in form of low nutrient uptake by the phage-resistant

bacteria compared to the phage-sensitive bacteria thereby resulting in reduced

growth rate of the phage-resistant bacteria. The system was modeled by

following sets of equations:

_r tð Þ¼D r0� r tð Þð Þ� γsfs r tð Þð ÞS tð Þ� γMfM r tð Þð ÞM tð Þ (18)

_S tð Þ¼ fs r tð Þð ÞS tð Þ�kS tð ÞP tð Þ�DS tð Þ (19)

_M tð Þ¼ fM r tð Þð ÞM tð Þ�DM tð Þ (20)

_I tð Þ¼ kS tð ÞP tð Þ�DI tð Þ�k

Z ∞

0

e�DτS t� τð ÞP t� τð Þdν τð Þ (21)

_P tð Þ¼�kS tð ÞP tð Þ�DP tð Þ+ k

Z ∞

0

e�Dτb τð ÞS t� τð ÞP t� τð Þdν τð Þ (22)

Here, fs(r) and fM(r) denotes nutrient uptake functions for S and M,

respectively, with fs(r)> fM(r). D is the dilution rate, γs and γM are constants,

and ν is a probability measure.

2.5 Bacteria–Phage Interaction Networks
Instead of following the well-traveled route of studying phage bacteria inter-

actions as coupled interactions in isolation, recent work has attempted to

introduce systems approaches to study these interactions at a network level

(Flores, Meyer, Valverde, Farr, &Weitz, 2011;Weitz et al., 2013). Network

approaches have been successfully applied to a plethora of problems in biology

ranging from neuronal networks to protein–protein interactions (Banerjee &

Roy, 2012; Banerjee, Sinha, & Roy, 2015). Also, at the level of individual

proteins, residue interaction graphs or protein contact networks have been

used with success to model such proteins as networks (Grewal, Mitra, &

Roy, 2015; Grewal & Roy, 2015). They have also been used with success

in biomedical imaging and noninvasive diagnostics (Banerjee, Azharuddin,

et al., 2015).

It has been shown that available host phage infection networks demon-

strate a characteristic nested structure and are statistically different from

random networks (Flores et al., 2011). Antibiotic treatment has been

observed to expand the resistance reservoir and ecological network of the

phage metagenome, and broad bacterial functions are enriched in phage
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metagenomes following drug perturbation in mice (Modi, Lee, Spina, &

Collins, 2013). That, coevolutionary diversification creates nested-modular

structure in phage bacteria interaction networks has also been demonstrated

(Beckett & Williams, 2013).

As bacteriophages are the most abundant biological entities in our gut,

they should be given due consideration in our pursuit of personalized

medicine. There exists a plethora of interactions in the human gut: interac-

tions between host, bacteria, and phages (Khan Mirzaei & Maurice, 2017).

Network level studies on human gut phageome (HGP) have revealed

that it plays a critical role in maintaining the proper function of a stable,

balanced gut microbiome. HGP is significantly decreased in individuals with

gastrointestinal disease like ulcerative colitis and Crohn’s disease (Manrique

et al., 2016).

2.6 System of ODEs
To understand the density-dependent qualities of bacteria–phage interac-

tions, Payne and Jansen (2001) studied a system of ODEs with time-

dependent variables H(t) and h(t). H(t) and h(t) represents the host responses

against the bacteria and against the phages, respectively, thereby capturing

the role of host in generic manner. The following is the set of ODEs pro-

posed to model phage therapy:

_S¼ αS�kSP�H tð ÞS (23)

_I ¼ αI + kSP�μiI�H tð ÞI (24)

_P¼ bμiI�kSP�μpP�h tð ÞP (25)

Here, the replication rates for uninfected as well as infected bacteria are

assumed to be identical. μi is the degradation rate of infected bacteria or lysis
rate. Several important threshold values including phage proliferation thresh-

old value, clearance threshold were calculated with each resulting in different

therapy outcomes. In passive therapy, which depends on the concentration of

phages—lysis due to primary infection caused by inoculated phages is a prime

reason for removal of a major part of the bacterial population. On the other

hand, in active therapy, which depends upon the concentration of bacteria—

elimination of bacteria is caused mainly by secondary infection due to phages

released by lysis.

Another model was proposed to study the dynamics of interaction in

which the ability of phage to lyse host cells decreases as they approach their

carrying capacity (Weitz & Dushoff, 2008).
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_S tð Þ¼ αS tð Þ 1�S tð Þ
C

� �
�kS tð ÞP tð Þ 1�mS tð Þ

C

� �
� dS tð Þ (26)

_P tð Þ¼ bkS tð ÞP tð Þ 1�mS tð Þ
C

� �
�μpP tð Þ (27)

Here, α denotes the fractional reduction in cell lysis, and the density-

independent death rate is given by d. The model results in alternative stable

states where initial population conditions determine either the coexistence

or the overall phage extinction.

Multiple phage adsorptions in host cell were analyzed by considering a

nontrivial model involving ODEs (Smith & Trevino, 2009). This system

allows for adsorption of multiple phages upon a single bacterial host cell.

In this model, for both phage and bacteria to persist, the identified basic

reproduction number must exceed unity. Also, the number of phages

adsorbing to a bacterial cell follows the binomial distribution. The mean

of the distribution increases slowly with time.

2.7 Recent Developments
In a recent study, modeling the dynamics of Salmonella phage and its path-

ogenic host, variation in latent period and adsorption rate were introduced

instead of considering them as constant as was the case with previous

models (Santos, Carvalho, Azeredo, & Ferreira, 2014). The incorporation

of latent period in form of a normal distribution and adsorption rate as a

function of the bacterial growth rate results in better agreement between

the data obtained by numerical solutions and experimental observations.

This makes it possible to accurately predict the behavior of bacteria–phage
dynamics.

In a recent paper (Samaddar et al., 2016), a newmechanism, namely, that

of secondary killing for cell death in addition to the primary mechanism of

cell lysis, has been proposed. The phage host system modeled was

mycobacteriophage D29 andMycobacterium smegmatis. Further experimental

results in the system verified that phage infection leads to production of

superoxide radicals, which are released upon the lysis of host cells. Reactive

oxygen species (ROS) thus generated contribute toward the host bacterial

cell death as a secondary factor. This process of phage-mediated secondary

killing is depicted in Fig. 7.
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It was also shown that only a fraction of the infected cells gets lysed, and

the MOI plays an important role in both the cases. The proposed model can

be represented by the following set of DDEs:

dS

dt
¼ αS tð Þ|ffl{zffl}

cell growth

� kS tð ÞP tð Þ|fflfflfflfflffl{zfflfflfflfflffl}
cell decay due

to adsorption

� qmkS t� τð ÞP t� τð ÞS tð Þexp �t= aτð Þ
h i

Heavi t� τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
secondary cell decay due to release of superoxide from lysed bacteria

(28)

dI

dt
¼ kS tð ÞP tð Þ|fflfflfflfflffl{zfflfflfflfflffl}

infected cells

due to adsorption

� mkS t� τð ÞP t� τð ÞHeavi t� τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fraction of cells lysed

infected cell population decay due to lysisð Þ

(29)

dP

dt
¼ b|{z}

burst size

mkS t� τð ÞP t� τð ÞHeavi t� τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fraction of cells lysed resulting

in new phages

� kS tð ÞP tð Þ|fflfflfflfflffl{zfflfflfflfflffl}
phage decay due to adsorption

(30)

Here, m is the fraction of the infected cells lysed. The parameter q was

introduced in the system of DDEs to capture the effect of the “secondary

killing factor” released in the environment. This is responsible for secondary

cell death arising from the procedure proposed herein apart from the

Fig. 7 Phage-mediated secondary killing of bacteria.
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well-known primary mechanism of host cell lysis. The effect of this second-

ary killing and its dependence upon the susceptible cell population as a

function of time is given by:

Dsecondary∝S tð Þe�t
aτ (31)

where a is a constant.

3. COMPUTER SIMULATIONS

Computer simulations, sometimes also referred to as numerical simu-

lations, represent a process, which attempts to mimic the actual behavior of

a system. Usually this is accompanied by a clever application of various types

of algorithms. Sometimes, a computer simulation is interchangeably used

with the terms “numerics” or “numerical solutions” in biological literature.

A numerical solution can be thought of as a process of approximately solving

different mathematical equations obtained after the mathematical modeling

of a system—often on a computer. Needless to mention, closed form or

exact analytical solutions would have been rather difficult to obtain in most

of such scenarios.

There are various types of computer simulations among which Monte

Carlo is one of the most extensively studied methods. Other than that there

are various other kinds of simulations like agent-based simulations, contin-

uous dynamic simulations, discrete event simulations, etc.

3.1 Monte Carlo Simulations
Monte Carlo simulation is a class of numerical simulations where repeated

sampling of a huge sample space on a random basis is employed to obtain

results. It is named after the Monte Carlo casino located in Monaco, France.

It is widely used across the sciences fromphysics to biology and in engineering,

marketing, finance, and transport to name a few areas (Kroese, Brereton,

Taimre, & Botev, 2014). It is especially helpful in the area of decision making

and risk analysis where the chance of occurrence of an event is very important.

As aforementioned, repeated random sampling is the core idea by which we

implement probabilistic principles to solve a wide range of deterministic prob-

lems. Stanislaw Ulam invented the version of Monte Carlo simulations as

we use them today. It must also be mentioned that the famous Italian physicist

and Nobel Prize winner Enrico Fermi also experimented with the ideas
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associated with Monte Carlo simulations, even though he did not really pub-

lish in this area. Stanislaw Ulam and John Von Neumann used these methods

on an ENIAC computer during the development of the atom bomb project

at Los Alamos National Laboratory. In the Markov chain Monte Carlo

(MCMC) method, which is named after the Russian mathematician Andrey

Markov, random samples are drawn from a known stationary probability dis-

tribution. Here, the probability distribution is constructed by taking into

account the probability of occurrence of each event in a finite number of steps

(Hastings, 1970). ThisMCMC could predict the possibility of an immediately

subsequent event depending merely on the present event and the given

probability distribution. This means it would not retain or use the memory

of previous events. MCMC method has diverse applications in the field of

computational biology and computational physics.

Here, we present a very simple example of Monte Carlo simulations—

namely to estimate the value of “π,” which is the ratio of the circumference

to the diameter of any circle. To estimate the value of “π” we will consider a
circle inside a square as shown in Fig. 8.

The circle can be divided into four quadrants and the square into four

equal parts. We denote the smaller square by Sqsmall. Every side of Sqsmall

equals R, which is also the radius of the given circle. For simplicity, let us

focus on only one quadrant. Let us conceive of a machine, which can

imprint and count the tiniest of dots in a given area. We let this device

Fig. 8 A simple example of Monte Carlo simulations.
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imprint a good number (�105 or more) of dots purely at random inside the

smaller square, Sqsmall, which is presently under our consideration. We then

let our machine count the total number of dots inside the quadrant and the

total number of dots inside the smaller square. Obviously, the latter will

include dots located not just in the quadrant contained in the smaller square

but also dots located outside it. For the moment, let us neglect all dots lying

right on the boundaries of the quadrant or the square—which even if

accounted will not alter our findings in any remarkable manner. As aforemen-

tioned, “π” is four times the ratio of the area of the quadrant to the area of the

smaller square. Equivalently, in the present scenario, we would find that to a

very good approximation it would be four times the ratio of the number of

dots inside the smaller square to the number of dots in the quadrant, as counted

by our device.

Now, how do we simulate this process on a computer? For our simula-

tions, let us use a random number generator, which uniformly generates two

random numbers between 0 and R, at every step of the simulation. These

two numbers would represent the abscissa, x, and ordinate, y, of each dot

imprinted by our machine. The distance of the position of each dot from

the center of the circle is then calculated as d¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2ð Þp

. If this distance,

d, is less than or equal to the radius, R, of our circle—then the dot obviously

lies inside the quadrant of our circle or on its boundary. Let us call this

event A. When the distance, d, is greater than the radius, R, of our circle,

it is obviously located outside the quadrant but still within or at most on

the boundary of the smaller square. We denote this event as B. We separately

keep track of the number of times each of these events, A and B occur

and denote these as NA and NB, respectively. Let us repeat this process for

105 or more times on the computer and calculate 4NA/(NA+NB).We would

again find that this ratio is tantalizingly close to π, the determination of

which has been the singular aim of our elaborate exercise.

3.2 Probability Distribution
Probability or the chance of the occurrence of an event is one of the central

ideas of Monte Carlo simulations. Here, we take a cursory glance at how the

properties of a system can be described by a probability distribution function,

which is often simply referred to as the probability distribution. The prob-

ability of occurrence of various outcomes of a given system under different

conditions is represented by the probability distribution. It is usually

expressed as a function of a particular independent random variable or in
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some cases by more than one random variable, which may or may not be

correlated among each other.

In statistics, probability distributions can be either discrete or continuous

depending upon the nature of the sample space. In a discrete probability dis-

tribution, possible outcomes are always captured by a discrete set of numbers

or events. Examples of discrete probability distributions can be observed in

case a coin is repeatedly flipped or a dice is rolled many times. A probability

mass function is a function that gives the probability that a discrete random

variable is exactly equal to a given value. However, in continuous probabil-

ity distributions the value of a possible outcome could be any real number,

albeit within a certain interval.

The most straightforward type of probability distribution is the uniform

probability distribution, where each event in the distribution has the same

probability of occurrence. There are of course many other known examples

of probability distributions. Binomial distribution, Poisson distribution, and

Normal or Gaussian distribution are among the most important and fre-

quently used probability distributions, especially the last one.

The binomial distribution is a type of discrete probability distribution,

which has only two independent and mutually exclusive outcomes—say

“success” and “failure”—each with a given probability. Here, probability mass

function is used and has two parameters n and p. The number of independent

trials is denoted by n, whereas p is the probability of one of the two out-

comes. The probability of the other outcome can be denoted by q, where

q is obviously equal to (1�p) since there are only two outcomes. If the num-

ber of one of the two given outcomes viz “success” is x, in a total number of

n trials, then the probability mass function is represented as:

P xð Þ¼ nCx � px � q n�xð Þ (32)

The Poisson distribution is also a type of discrete probability distribution,

which represents the chance of occurrence of rather rare events. It is mainly

used in scenarios where the number of total events is very large but the prob-

ability of success is rather small. In this probability distribution, the mean, m,

and the variance of the sample space is known to be identical. Here, Eq. (3),

which has been mentioned earlier, represents the probability of a rare and

random variable x:

P xð Þ¼ e�m �mx

x!
(3)

On the other hand, normal distribution is a continuous probability dis-

tribution. Here, the highest frequencies are concentrated around the center
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of the distribution. Frequency decreases as the ends of the distribution are

approached. It is widely used to model many real-world phenomena asso-

ciated with randomness. It is also referred to as Gaussian distribution after the

German mathematician Carl Gauss who is supposed to have discovered it.

The graphical representation of the normal distribution looks like a bell-

shaped curve, which is symmetrical at both ends. This symmetry gives rise

to an exactly identical value of the three central tendencies of any given

distribution—namely mean, median, and mode. With the central tendency

of μ, whose value is democratically shared by the mean, median, and mode

of the distribution along with a standard deviation of σ, the probability

density function of the normal distribution is represented as:

P xð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �π �σ2

p � e
� x�μð Þ2

2�σ2 (33)

3.3 Probability of Cell Division
Bacteria replicate by binary fission. In this process, after replication of the

genetic material in an exact copy, a bacterial cell gets split into two cells, with

each cell possessing a copy of the replicated genetic elements. A bacterial

population is made up of many bacterial cells, which could vary in their

age, metabolic state, etc. So when we are considering the growth in popu-

lation at a particular time step, we also have to take into account the event of

every cell division at that specific time step.When we are considering a large

bacterial population, it is quite apparent that all the cells do not simulta-

neously undergo cell division at the very same instant of time (Dwek,

Kobrin, Grossman, & Ron, 1980).

Experimentally, we can determine the specific growth rate, μ, of bacte-
ria, where the specific growth rate is measured in the log phase. In the log

phase, the bacterial population growth is subject to first-order reaction

kinetics and depends on the number of existing bacterial cells at a particular

time instant. Bacterial cell count can be directly measured by a count of

colony-forming units or indirectly by optical density measurements. Now

within a specific time Δt in the log phase, if the change in the number of

cells is ΔN, then the specific growth rate, μ, can be calculated as follows:

μ¼Δ ln Nð Þ
Δt

(34)
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The specific growth rate has a unit of t�1. It also represents the proba-

bility of cell division. For example, let us suppose that a bacterial culture

has the specific growth rate 0.3 per minute. It implies that a particular cell

inside the population has a probability of 0.3 for binary fission in everyminute.

Now, to simulate the system using Monte Carlo methods, we would use this

number as the probability for cell division. In our simulations—at every time

step we will generate a random number, Rw, from a uniform distribution

between 0 and 1. Depending on the system under study, it could also be

drawn from any other predefined distributions. If Rw is less than the probabil-

ity of binary fission, i.e., the specific growth rate, the cell divides.

3.4 Probability of Phage Adsorption
We have discussed the complexity of phage adsorption on a host cell surface

earlier in Sections 1.3 and 1.4 of this chapter. This process is affected by var-

ious factors ranging from the affinity of phage particles for receptor mole-

cules to the rates of diffusion in the medium of infection. Here, the MOI

also plays a vital role as it denotes the number of phages per host cell. An

MOI of 1 indicates that on an average for every host cell there is an adsorbed

phage particle. However, in a real infection medium a host cell may get

infected by more than one phage particle. In fact it may not even be infected

by a phage particle at all. The probability of a host cell to be affected by a

phage particle can be well represented by the Poisson distribution (Ellis &

Delbr€uck, 1939). At an MOI equal to x, the probability that a host cell get-

ting infected by y phage particles is captured by:

P yð Þ¼ xye�x

y!
(3)

For an MOI equal to 1, the probability that a phage particle infects a host

cell is 0.36. But for a lower MOI like 0.05, the probability of a host cell get-

ting infected by a phage particle is about 0.048. Therefore, for our Monte

Carlo simulations, we can use this number as the probability of adsorption or

probability of infection. To simulate such infection events, at every time

step—for every host cell we generate a random number, Ra from a uniform

distribution. Now if the value ofRa is less than the adsorption rate—the host

cell is understood as infected by a phage. If a host cell has not yet been

infected by a phage particle, we would check whether the cell could divide

(Levin, Moineau, Bushman, & Barrangou, 2013; Samaddar et al., 2016), as

discussed earlier in Section 3.3.
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3.5 Latent Period and Burst Size
The latent period is the time taken by a phage particle to reproduce inside an

infected host cell. At the population level in a one-step growth curve, it can be

represented as the time taken for the newly formed phage particles to appear

in the media. The number of newly synthesized phage particles from an

infected cell is called the burst size. From themoment of infection to the burst-

ing out of an infected host cell—a phage particle will try to reproduce

its genome and also to synthesize the relevant structural proteins, so as to form

newphages. Both latent period and burst size dependon the host cell, infecting

phage, and the incubation conditions. As described earlier in Section 1.5, from

one-step growth experiments, we can directly measure the latent period and

the burst size. However, for the burst size measurement, we have to divide the

count of plaque-forming units (PFU) at saturation of the one-step growth

curve by the number of host cells at the beginning of the experiment. For

example, if we start with 5�105 host cells and at the saturation of the

one-step growth curve the PFU count is1.5�108, the burst size will be

approximately 300.

3.6 Secondary Infection and Killing
Infected cells burst out to release new phage particles, which carry the poten-

tial of reinfection. However, all infected cells would not burst out simulta-

neously at a single time step. A percentage of cells that get infected—burst

out after the latent period. This percentage is decided by the host species,

incubation conditions, and MOI. In case of M. smegmatis MC2155 and

mycobacteriophage D29, the infection in low MOI results in about 10%

of the infected cells to burst out after the latent period (Samaddar et al.,

2016). There are also few reported mechanisms in the same system, where

infected cells produce certain ROS. Due to this release, some of the uni-

nfected host cells in the vicinity also get killed as collateral damage. This is

depicted in Fig. 7.

We attempt to incorporate this entire process in our Monte Carlo sim-

ulations in the following manner. At each time step 10% of the infected cells

burst out after the latent period. An infected cell will produce new phage

particles exactly identical to the burst size. The effects of ROS which kills

a portion of neighboring cells are quantified by the ratio of the number of

uninfected cells to the number of infected cells.
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Fig. 9 represents the overall algorithm of the Monte Carlo simulation of

bacteria–phage interaction.
In conclusion—the obvious purpose of computer simulations is to gain a

better understanding of any given system. In experiments, we can usually

observe the behavior of a system. However, there are various limitations

due to which we cannot predict or often even understand the internal mech-

anisms at work in the system, beyond a certain extent. But whenwe simulate

a system, it confers the ability to gain some “understanding” and even pre-

dict the behavior of a system—in response to changes in various parameters.

Sometimes, this can lead to better experimental design, at least in accessible

experimental regions dictated by parameters of the model. The problem

detailed here (Samaddar et al., 2016) presents a good example of how sim-

ulations and modeling help in designing experiments, which can shed valu-

able insight into the overall behavior of the system. The experimentally

verified findings of the secondary killing mechanism were made possible

only due to modeling and simulation efforts.

Fig. 9 Algorithm for Monte Carlo simulation of bacteria–phage dynamics.
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4. PHAGE BACTERIA INTERACTION UNDER SPATIAL
LIMITATIONS

Earlier in this chapter, we discussed about bacteria–phage interac-

tions in liquid media or broth and various aspects of modeling such inter-

actions. Interactions in a liquid medium or broth represent a well-mixed

population dynamics, which can be adequately dealt without the inclusion

of subtleties of the underlying spatial structure. However, in many other

environments like soil ecosystems, animal or plant tissues, and bacterial

biofilms, there are various kinds of spatial restraints influencing bacteria–
phage interactions. A higher viscosity of the medium would impose spatial

constraints, as a result of which the phage population would not adequately

mix with the bacterial population and the interactions remain spatially

constrained.

4.1 Formation of Plaque
The spatially influenced interactions between bacteria and phages can be

studied in the formation of plaques by bacteriophages on the bacterial

lawn. Such plaque formations are not only studied to understand the spatial

interactions in bacteria–phage systems—they are also widely used as a tech-

nique to count the phage number in phage population dynamics (Ellis &

Delbr€uck, 1939). Experimentally plaques can be obtained by pour plate

technique method on soft agar. In this method, diluted phage solution

is mixed with pure host population, termed as indicator bacteria. The

bacteria–phage mixture is then mixed with 0.4%–0.8% agar media, called

soft agar or top agar. Subsequently, the mixture is poured on the standard

1.5%–2% thin hard agar plate and incubated at the proper temperature,

overnight. After incubation, the host population on soft agar is likely to

produce a bacterial lawn atop the agar substrate. However, some small clear

zones are likely to appear and these are referred to as plaques. The dynamics

behind the plaque formation is as follows. The phages infect the bacterial

cells and produce new phage particles after bursting out from infected host

cells. These newly formed phage particles are now ready to infect the neigh-

boring susceptible bacteria resulting in a “clear zone” at the point of infec-

tion inside the cloudy host lawn as represented in Fig. 10. The number of

plaques indicates the number of phages in the diluted phage solution and is

called plaque-forming unit or PFU.
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4.2 Factors Affecting Plaque Diameter
Plaque formation inside soft agar is a complex phenomenon dictated by var-

ious factors. We will discuss these factors one by one in the sequential order of

their role in plaque formation. Inside the soft agar, the adsorption events of

phage particles on host surfaces depend on the adsorption rate constant, host

density, agar density, and latent period (Abedon&Yin, 2009). The greater the

host density, the faster does adsorption of phage particles occur. This also indi-

cates that the probability of the adsorption of phage particles increases with the

host density. Also, higher agar density decreases the media porosity, which in

turn retards phage diffusion through agar. After the first round of infection, the

newly released phage particles gain the ability to infect neighboring host bac-

teria. The burst size should also be counted as a function of plaque growth after

the initial rounds of infection. The higher the burst size, greater is the density

of phages near a host cell—thereby increasing the probability of adsorption in

the later round of infections. On the other hand, lower density of indicator

bacteria negatively affects the plaque growth. The insufficient formation of

bacterial lawn due to the initial low cell density makes it difficult to identify

Fig. 10 Plaque formation on agar.
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the “clear” plaque formation zones on the agar plate. It has been observed that

phageswith short and long latent periodswould produce smaller plaques com-

pared to phages with medium latent period (Gallet, Kannoly, &Wang, 2011).

Though phages with higher adsorption rates can easily counter the host in the

initial stages, overall, an increase in the adsorption rate at later time has a neg-

ative effect on the plaque diameter. Phages possessing higher adsorption rates

diffuse in a slower manner thereby resulting in a smaller plaque diameter

(Abedon & Yin, 2009; Gallet et al., 2011).

4.3 Modeling of Plaque Growth as a Reaction–Diffusion System
As discussed earlier, various factors are responsible for plaque formation. To

model the dynamics of plaque formation, various approaches have been

undertaken. Initially, adsorption rate and the burst size were ignored while

modeling plaque formation. The phage diffusion rate, D, and the latent

period, L, were the only parameters considered to affect the size of the

plaque. The rate of plaque enlargement, R, was described (Kaplan,

Naumovski, Rothschild, & Collier, 1981) as:

R¼ x � D

L

� �1
2

(35)

Here, x represents the binding constant of phages.

A more mechanistic approach involves reaction–diffusion equations to

model the interaction between the free phages, V, the host cells, B, and

the infected hosts, I. Burst size, Y, is also considered along with various rate

constants like k1, k2, and k3, which, respectively, represent adsorption con-

stant, bacteria–phage dissociation constant, and the death rate of infected

bacteria. The overall reaction equation is:

V +B$k1
k2
I!k3� Y �V (36)

Depending on the above equation, the system of equations for the

concentrations of V, B, and I as a function of r
!
and t is given by:

δ V½ �
δt

¼D �δ
2 V½ �
δr2

+
D

r

δ V½ �
δr

� �
�k1 V½ � B½ �+ k2 I½ �+Yk3 I½ � (37)

δ B½ �
δt

¼�k1 V½ � B½ �+ k2 I½ � (38)

δ I½ �
δt

¼ k1 V½ � B½ ��k2 I½ ��k3 I½ � (39)
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4.4 Traveling Wave Front Solutions
This system of three coupled equations from Eqs. (37) to (39) represents a

reaction–diffusion system of bacteria–phage interactions on an agar plate as a
function of time and space. A traveling wave front solution for this system

can be obtained with a coordinate z
!¼ r

!�C
! � t

!
, where the front velocity is

represented by C. At equilibrium, where the adsorption and phage dissoci-

ation processes are much faster than the death rate of the infected host, the

front velocity is given by:

Ceq ¼ 2 � D �k3 � Y �1ð Þ � f �Km

1+ f � kmð Þ2
" #

1
2

(40)

Here, N0 and Nm represent the initial lawn density and the highest

lawn density reached by the bacteria. The other terms are f¼N0/Nm and

Km¼ (k1 �Nm)/k2. The above expression is also used to study hindered dif-

fusion of phages (Yin & McCaskill, 1992).

4.5 Cellular Automata Modeling
Cellular automata is a class of discrete and individual agent-based modeling

systems, applied in a variety of fields ranging from engineering and physics to

theoretical biology. In this type of modeling, a finite number of cells are gen-

erally considered on a one-dimensional or two-dimensional lattice, though

three-dimensional cellular automata is also used (Chopard &Droz, 1998). In

the lattice, there is a fixed number of possible states available for each cell.

This type of modeling is very useful when the state of a cell is considered as a

function of time as well as space. John Von Neumann and Stanislaw Ulam

are first thought to have proposed it in 1940 at the Los Alamos National Lab-

oratory. Decades later, mathematician John Horton Conway devised a

famous cellular automaton called the Game of Life, also popularly known

simply as Life. Subsequently Stephen Wolfram argued about the huge

potential of cellular automata techniques.

Depending on the dimensionality of the lattice considered, every cell

has a definite number of neighbors. In one dimension, the radial neighbor-

hood is the most commonly used method for defining the neighborhood

of a cell. It specifies the number of cells on either side of the central cell.

There are various well-known neighborhood methods in two dimensions

like Von Neumann neighborhood method or Moore neighborhood

method. Von Neumann neighborhood method is the smallest and simplest
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neighborhood method in two dimensions. It consists of the cell itself and

the cells at a Manhattan distance of 1. Considering the coordinate of the

central cell as (0,0), its neighborhood, according to the Von Neumann

neighborhood method, can be described as:

N ¼ 0, �1ð Þ, �1, 0ð Þ, 0, 0ð Þ, +1, 0ð Þ, 0, +1ð Þ½ � (41)

On the other hand, in the Moore neighborhood method the coordinates

of the neighbors would be given by:

N ¼ �1, �1ð Þ, 0, �1ð Þ, 1, �1ð Þ, �1, 0ð Þ, 0, 0ð Þ,½
+1, 0ð Þ, �1, +1ð Þ, 0, +1ð Þ, 1, +1ð Þ� (42)

Initially, each cell is assigned a particular state. At every time step, each

cell changes its state depending on the state of its neighbor by some fixed set

of rules. The system is then evolved over a period of time. Other than the

methods mentioned earlier, there are few other neighborhood methods like

Margolus neighborhood method, Hexagonal neighborhood method, etc.

The basic neighborhood methods discussed earlier are shown in Fig. 11.

4.6 SIR-Type Modeling
Spatially restricted bacteria–phage interactions can be modeled upon SIR

class of models, which are widely used in epidemiology. SIR might refer

to “susceptible, infected, recovered” or “susceptible, infected, removed.”

They are also used in modeling of interacting particle systems or IPS

(Wei & Krone, 2005; White, Del Rey, & Sánchez, 2007). In SIR, on a

two-dimensional grid, a finite number of cells is considered. Each cell can

have three possible states, susceptible, S, infected, I, and removed or

Fig. 11 (A) Radial neighborhood, (B) Von Neumann neighborhood, and (C) Moore
neighborhood in cellular automata.
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recovered, R. Initially, all cells are susceptible in nature, S, with the excep-

tion of a single infected cell occupying a random position on the grid. At

each subsequent time step, neighboring susceptible cells become infected

depending on a predefined mathematical function which is defined by

the phage adsorption rate, latent period, burst size, and phage diffusion as

described in Fig. 12. Most of the rates can be experimentally determined

in the laboratory. This kind of modeling is occasionally also referred to as

probabilistic cellular automata in literature.

When a phage particle infects a saturated population of susceptible hosts

at a particular point, a wave of infection is generated from the point of infec-

tion. This type of wave propagation can be modeled by reaction-diffusion

equations. The main purpose of this variety of modeling is to quantify the

rate of spreading of infection and its ultimate fate. The effects of various types

of mutant invasions inside a population can also be studied using suchmodels

(Wei & Krone, 2005).
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Fig. 12 Simulating plaque growth by cellular automata.
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