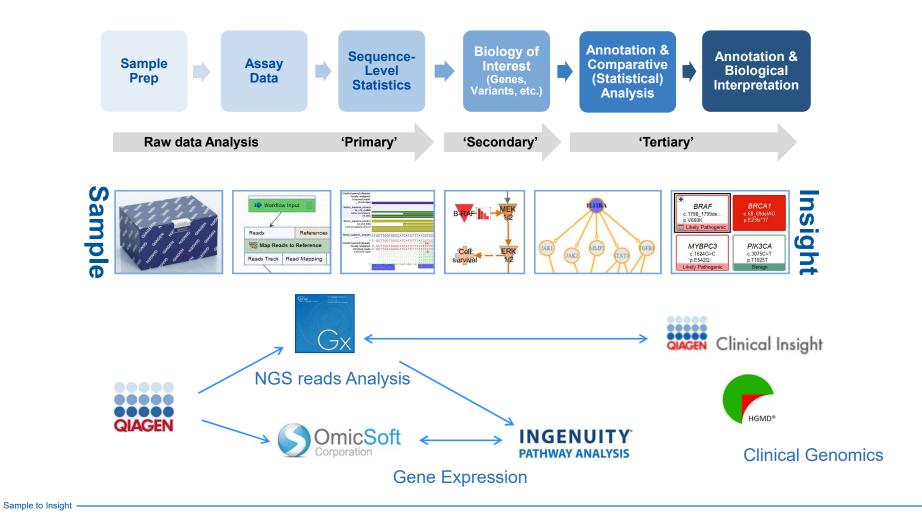


QIAGEN Digital Insights

QIAGEN CLC Product Profolio

Amit Chaurasia, PhD

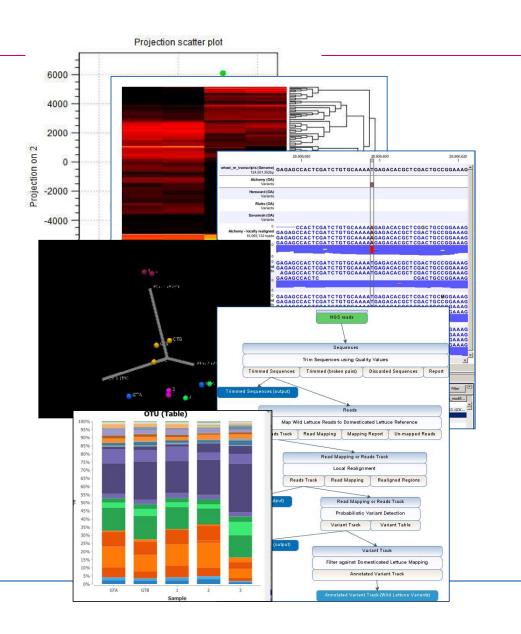

Associate Sales Development Manager

QIAGEN Digital Insights

- Sample to Insight

QIAGEN

QIAGEN Digital Insights solution



In QIAGEN CLC Genomics Workbench

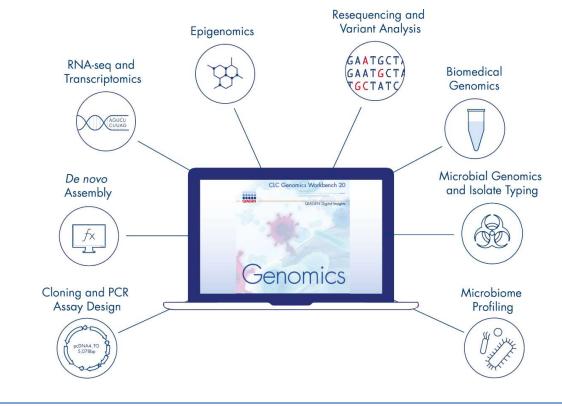
- 1. QC and preprocess NGS data (RNA-Seq, miRNA, and genomic reads)
- 2. Perform RNA-Seq, Microarrays, Statistical Expression Analysis
- 3. Resequencing, Variant detection & analysis

QIAGEN

- 4. De Novo genome assembly, genome finishing, BLAST
- 5. Epigenetics analysis (ChIP-Seq, Bisulfite Sequencing)
- 6. Facilitate analysis with interactive visualization
- 7. Construct automated workflows in user friendly interface

QIAGEN CLC Genomics Workbench

Any species, any platform, any workflow: The all-purpose power tool for NGS data analysis

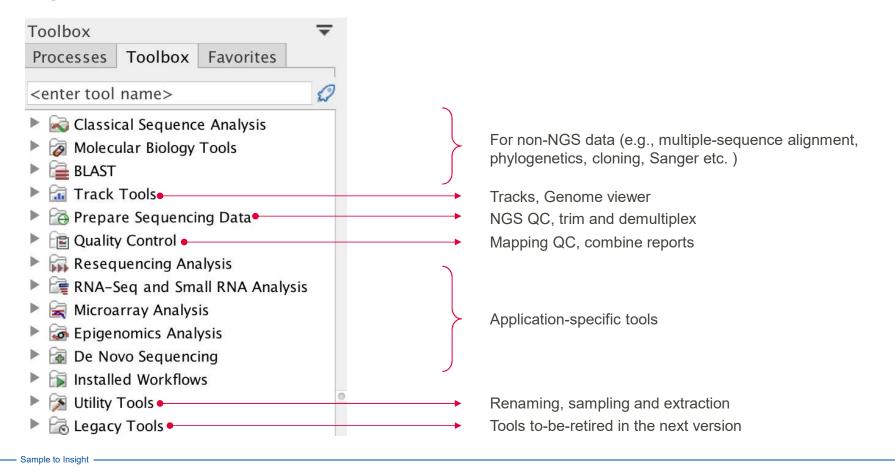

- · Analyze your data without waiting for bioinformatics experts
- High reproducibility
- · End-to-end integration for all data types and workflows
- · Highly visual

The graphical interface and the inclusion of the most frequently used programs make the NGS analysis a one-stop shop without having to fiddle with file reformats, software updates, and pipeline incompatibilities.

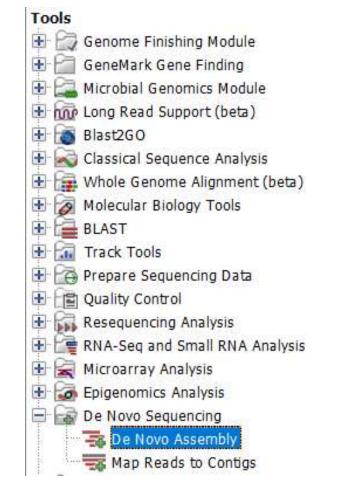
- Staff Scientist, Federal Government

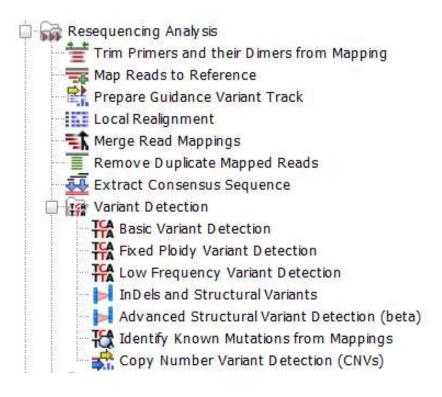
Source: Staff Scientist, Federal Government

QIAGEN CLC Genomics Workbench features

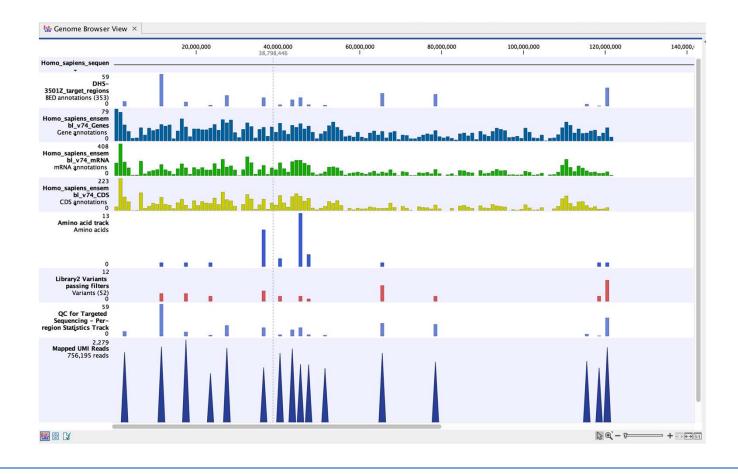

Cross-platform desktop genomics application with a graphical user interface

- User-friendly interface
- · Interactive visualization to facilitate analysis
- Ready-to-use and customizable workflows
 - For automated processing
 - For sharing with colleagues
- Modular design to add plugins
- Developed under quality guidelines set forth by ISO 9001:2015
 - TUV Rheinland-certified
- Works on Windows, Mac and Linux
- Works with reads from most platforms (Illumina, Ion Torrent, Oxford Nanopore, Pacific Bio)ences, BGI/MGI)
- · Scalable to enterprise-wide deployment
- Fully documented and supported



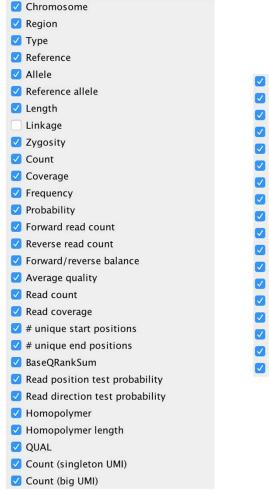

Organization of the toolbox

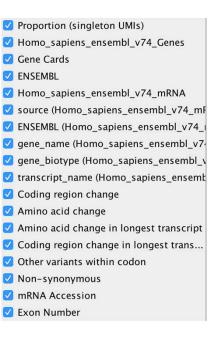
Build-in modules for reference mapping, variant calling and de novo assembly



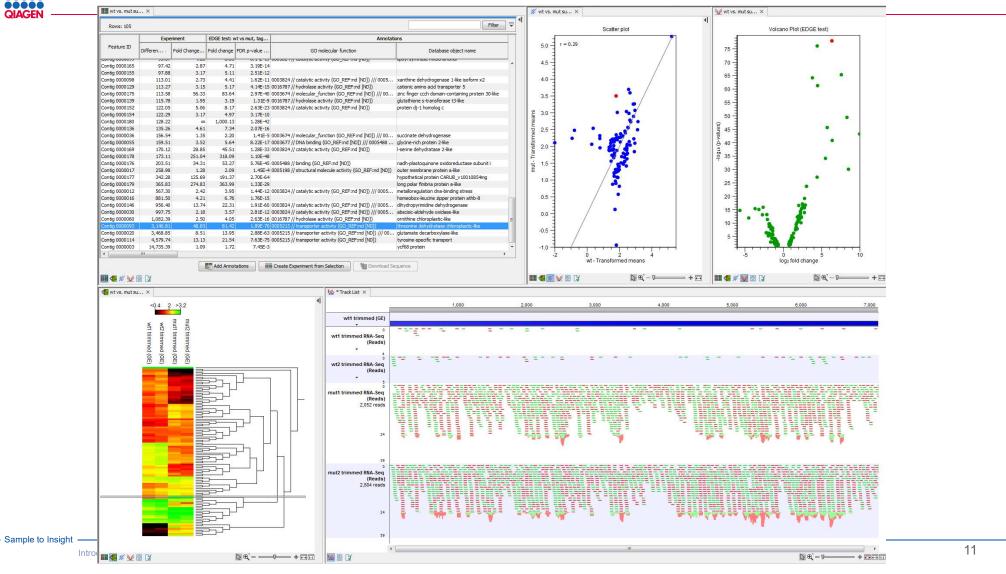
One Click workflow on CLC Genomics Workbench

G CLC Genomics Workbench 9.0.1		_		-	and the second second	Careful Training	7.44 M		- • ×			
File Edit View Download Toolbox Workspace	ce Help				_					1		
		Copy Paste De	Automation			Ci	werage distribution	i (values below med	dian + 3SDs)			
	品 * Copy of Find .			f car	6000							
ELC_Data					5000 -							
CLC_Demo					Logisod jo				tional Profile		0 07:06:59 BST 2016	i)
CLC_References			Rea	ds F	o agunu 3000 -			User: Bonne Parameter	ertT	ioniberier orb		
Q∗ <enter search="" term=""> ≜</enter>			Second Second	Map Reads to Re	fen					e = Not s	et database - Tuto:	isl subset
Toolbox 👻			Read	7	Mar 1000 -	hult.ddd	I I.J.III				ete GO basic	Tal Subse
GeneMark Gene Finding MetaGeneMark			Mapping or Reads T	rack Restric	0 -	2. _{0.} 500, 700, 750	- 200 - 300 - 32	2		e GO mapp	ing = Yes	No
Good Contraction Contraction			453,100	140.453.120		140,453,140	140,453.		140,453,180	140	ofile = Ye	5
Typing and Epidemiology (beta) General Tools	Homo_s	apiens_sequen DAAC	TGTTCAAACTGATC	SGGACCCACTCC	ATCGAGATTTC ATCGAGWTTTC	CTGTAGCTAGACC	AAAATCACCTAT	TTTTACTGTGAG	GTCTTCATGAAG	AATATATCTGAG	GTGTAG LONAL Prof:	Lie = NO
Ingenuity Pathway Analysis Image Analysis	HD701_1 (paired)	S1_L001_R1_001 CAAC Alligned Reads CAAC 104,567 reads CAAC	TGWTCWAACTGATC TGTTCAAACTGATC TGTTCAAACTGATC TGTTCAAACTGATC TGTTCAAACTGATC	GGACCCACTCC GGACCCACTCC GGACCCACTCC	ATCGAGATTTC ATCGAGATTTC ATCGAGATTTC ATCGAGATTTC	CTGTAGCTAGACC CTGTAGCTAGACC CTGTAGCTAGACC CTGTAGCTAGACC	AAAATCACCTAT AAAATCACCTAT AAAATCACCTAT AAAATCACCTAT	TTTTACTGTGAG TTTTACTGTGAG TTTTACTGTGAG TTTTACTGTGAG	GTCTTCATGAAG GTCTTCATGAAG GTCTTCATGAAG GTCTTCATGAAG	AATATATC GAG AATATATC GAG AATATATC GAG AATATATC GAG	GTGTAG GTGTAG GTGTAG GTGTAG	
Blast2GO Classical Sequence Analysis Zo Analysis Molecular Biology Tools		3474										
BLAST	HD701_1 (pa)	51_L001_R1_001 red) Annotated Variants									ry)	
Track Tools Give Resequencing Analysis	10	A- 51_L001_R1_001 aired) Coverage 2 annotations (10)									history)	
Create Statistics for Target Regions InDels and Structural Variants Coverage Analysis	201X_C	NGHS- ancer_Actionabl								_		
Gringe Addition Gringe Addition Gringe Addition Gringe Addition Gringe Addition Gringe Addition	Read Mas Homo_	sapiens_ensem	-							_	Specificity excl ignored (%)	
Compare Variants Functional Consequences	Creat RRM a	rootations (8,281)									100.00	
Transcriptomics Analysis Epigenomics Analysis	1 critegron	bl_v74_Genes motations (2,876)							-		100.00	
De Novo Sequencing De Novo Assembly Map Reads to Contigs		A- s1_L001_R1_001 ed) Amino Acid Changes	2 (E (F (Q (H	(8 (G (8 (W	(R. (S (K (V	(T (A (L (G)	F <mark>(D (G (</mark> I)	(K (V (T)(L)	(<mark>d (e (</mark> h (l (i	=(I (E		
Generation Generation Generation Generation Generation Generation Generation Generation Generation	N 8	701 S1 L0 ×								B(€) ["]	7 + 153 - 111	
	AC Rows		omo sapiens][niter] 🗢	
Processes Toolbox Favorites	Sa Sa 🛛 Oronos	ome Region -	Type Reference	Allele Ref	erence Length	Zygosity C	ount Coverage	: Frequency F	robability Forward re	Reverse re For	ward/re	
10e	7	115207144 5	NV A NV C	A Yes G No		1 Heterozygous 1 Heterozygous		1628 87.90 8930 32.27	1.00	1406 1314 1688 8607	0.48	




Genome Browser Visualization

More Variant Annotations for DNA

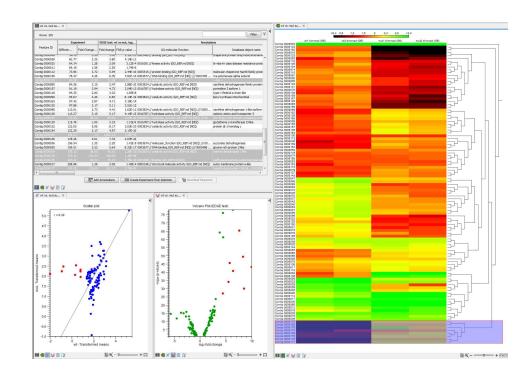


These include:

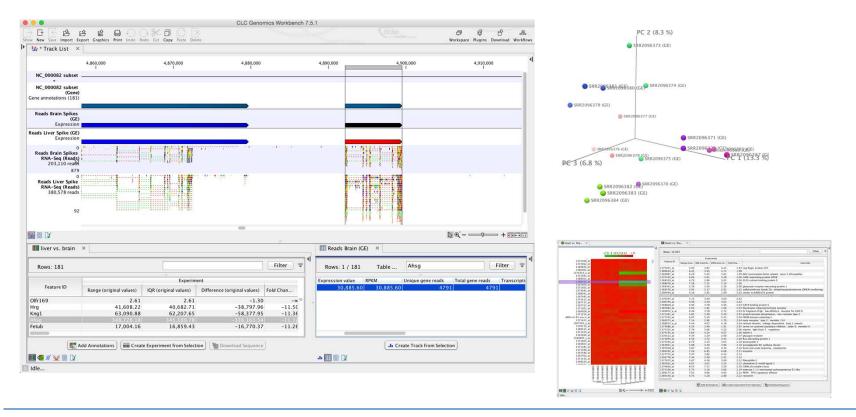
- Gene names.
- Transcript names
- Amino acid changes.
- non-synonymous.
- Exon number
- etc.

.... 00000 QIAGEN

INTERACTIVE VISUALIZATION - NAVIGATE TO MAPPING



Transcriptomics Data analysis on CLC Genomics Workbench


Key features

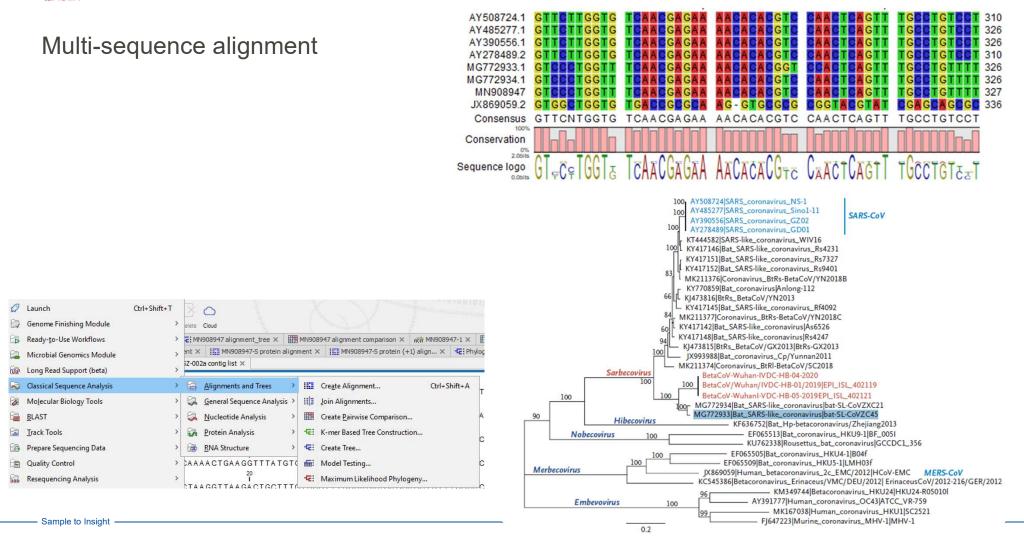
- Create UMI Reads for miRNA
- Quantify miRNA (seeds and mature)
- Annotate with RNA central Accession
 Numbers
- Create Combined miRNA Report
- Collect the reads that do not map to miRbase
- · Visualize your data
- GO enrichment analysis
- Upload to Ingenuity IPA for biological interpretation



RNA-Seq, Microarrays, Statistical Expression Analysis

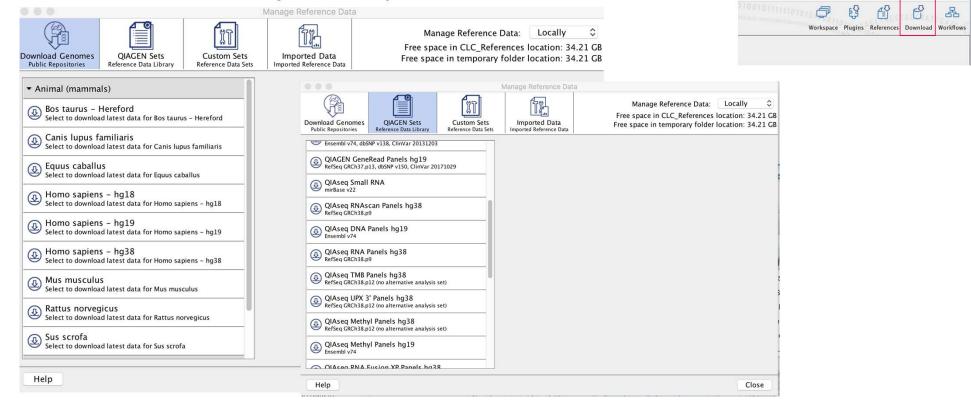
Analyze Expression Data and Upload Comparisons to IPA

- Sample to Insight



Genome annotation

Choose pr	ogram and database	
Program:	blastn: DNA sequence and database \sim	
Database	blastn: DNA sequence and database	
	tblastx: Translated DNA sequence and database	
	blastx: Translated DNA sequence and protein database	

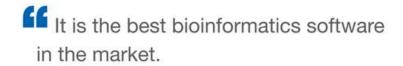


The reference data manager

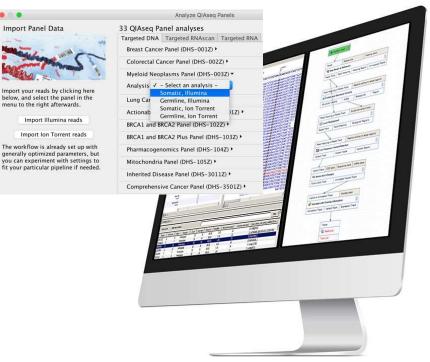
Convenient download of reference genomes and panel BED files

Batching: Iterate tool or workflow execution over all input files

Gx	Find Binding Sites and Crea	te Fragments	×
1.	Choose where to run	Select nucleotide sequence(s) or alignments to r Navigation Area	match primer against Selected elements (1)
2.	Select nucleotide sequence(s) or alignments to match primer against	Example Data CATP8a1 genomic sequence CATP8a1 mRNA Coning	
	?		Previous Next Finish Cancel


QIAGEN Biomedical Genomics Analysis Plugin

Biomedical genomics analysis and panel data analysis functionality is available through the QIAGEN CLC Genomics Workbench and the free plugin, Biomedical Genomics Analysis


- One-click workflows optimized for the sequencing platform and panel
- · Reproducible results
- DNA methylation, RNA, MSI/TMB, point mutations, CNVs
- · Highly visual

Sample to Insight

A Lab Director at a medium enterprise health care company would be very likely to recommend QIAGEN Bioinformatics for this reason:

QIAGEN Biomedical Genomics Analysis Plugin supports QIAseq panels

QIAseq DNA Panels

- DHS-001Z Human Breast Cancer Panel
- DHS-002Z Human Colorectal Cancer Panel
- DHS-003Z Human Myeloid Neoplasms Panel
- DHS-005Z Human Lung Cancer Panel
- DHS-104Z Human Pharmacogenomics Panel
- DHS-3011Z Human Inherited Disease Panel
- DHS-3501Z Human Comprehensive Cancer Panel
- DHS-101Z Human Actionable Solid Tumor Panel
- DHS-102Z Human BRCA1 and BRCA2 Panel
- DHS-103Z Human BRCA1 and BRCA2 Plus Panel
- DHS-105Z Human Mitochondria Panel

QIAseq TMB/MSI Panels

- DHS-8800Z Human TMB and MSI Panel order online DHS-6600Z + MSI booster SDHS-10101-11981Z-48
- DHS-6600Z Human Tumor Mutational Burden Panel

QIAseq RNAscan Panels

- FHS-001Z Human Leukemia Panel
- FHS-002Z Human Solid Tumor Panel
- FHS-003Z Human Lung Cancer Panel
- FHS-004Z Human Oncology Panel

QIAseq Multimodal Panels

- UHS-003Z Human Sarcoma Panel
- UHS-005Z Human Lung Cancer Panel
- UHS-009Z Human Leukemia Panel

QIAseq 16S/ITS Panels

- 333812 QIAseq 16S/ITS Screening Panel (24)
- 333815 QIAseq 16S/ITS Screening Panel (96)
- 333842 QIAseq 16S/ITS Region Panel (24)
- 333845 QIAseq 16S/ITS Region Panel (96)
- 333832 QIAseq 16S/ITS Smart Control (10)

QIAseq RNA Panels

- RHS-001Z Human Angiogenesis and Endothelial Cell Biology
- RHS-002Z Human Apoptosis and Cell Death
- RHS-003Z Human Cancer Transcriptome
- RHS-004Z Human Extracellular Matrix and Cell Adhesion Molecules
- RHS-005Z Human Inflammation and Immunity Transcriptome
- RHS-006Z Human Molecular Toxicology Transcriptome
- RHS-007Z Human Signal Transduction PathwayFinder
- RHS-008Z Human Stem Cell and Differentiation Markers
- RHS-009Z Human Immuno-Oncology
- RMM-001Z Mouse Angiogenesis and Endothelial Cell Biology
- RMM-002Z Mouse Apoptosis and Cell Death
- RMM-003Z Mouse Cancer Transcriptome
- RMM-004Z Mouse Extracellular Matrix and Cell Adhesion Molecules
- RMM-005Z Mouse Inflammation and Immunity Transcriptome
- RMM-006Z Mouse Molecular Toxicology Transcriptome
- RMM-007Z Mouse Signal Transduction PathwayFinder
- RMM-008Z Mouse Stem Cell and Differentiation Markers
- RMM-009Z Mouse Immuno-Oncology

QIAseq UPX 3' Transcriptome Kits QIAseq UPX 3' Targeted RNA Panels

Plugins and modules

Functionalities of the Workbench can be extended by installing plugins

Commercial modules	 Microbial Genomics Module Strain typing, epidemiology and antimicrobial resistance analysis Metagenomics community profiling, assembly and functional analysis Functional annotation tools Pre-built or user-customized databases Integrated support for QIAseq 16S/ITS panels 	 Genome Finishing Module Automated and manual tools for genome finishing and polishing Integrated support for PacBio + Illumina hybrid assembly and finishing
Free and third-party plugins	Free plugins Biomedical Genomics Analysis Long Read Support Whole genome alignment (beta) Ingenuity Pathway Analysis Ingenuity Variant Analysis	

- Sample to Insight

QIAGEN Genomics ProSuite*

- Key functionalities:
- Genome assembly and annotation
- Strain typing and characterization
- Microbiome analyses

Key benefits:

- (+)
- Only one solution needed
- Easy on-boarding
- Saves time
- Lower hardware requirements
- Greater biological insight

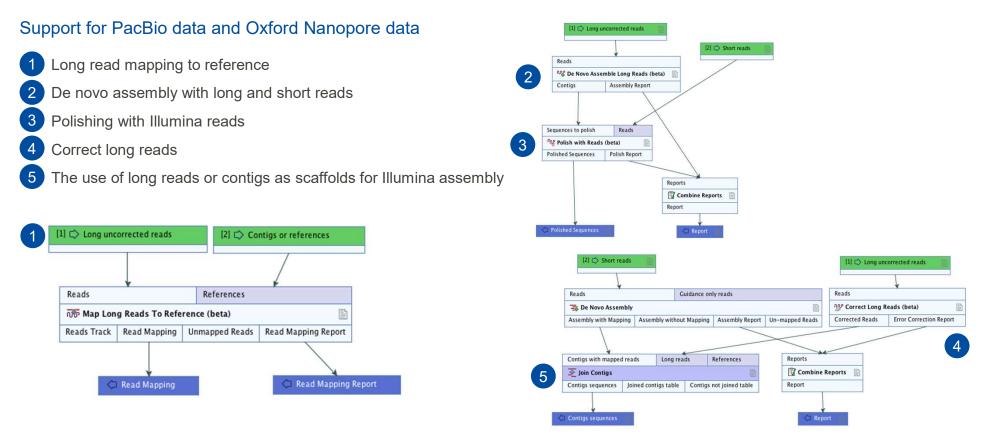
QIAGEN Genomics ProSuite

QIAGEN CLC Microbial Genomics Module

QIAGEN CLC Genome Finishing Module

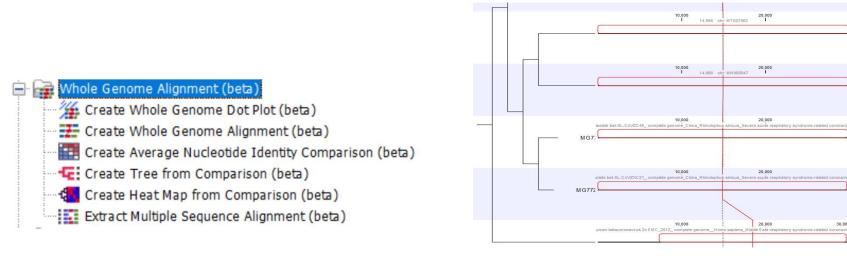
QIAGEN CLC Genomics Workbench

QIAGEN CLC Genomics Cloud Engine

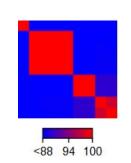

QIAGEN CLC Genomics Server

* Formerly "QIAGEN Microbial Genomics ProSuite"

Scaling your bioinformatics with QIAGEN CLC Enterprise Solutions 22



Long Read Support plugin – available to all QIAGEN CLC Genomics Workbench users



Whole Genome Alignment (beta) – free plug-in

	1	2	3	4	5	6	7	8	9
AY278489 SARS coronavirus GD01 complete genom		99.91	99.81	99.82	87.51	87.45	84.88	0.00	84.86
AY390556 SARS coronavirus GZ02_complete genome_Ch	99.95		99.85	99.84	87.63	87.14	84.97	0.00	84.96
AY485277 SARS coronavirus Sino1-11 complete genom	99.92	99.92		99.93	87.16	87.16	84.96	0.00	84.95
AY508724 _SARS coronavirus NS-1_ complete genom	99.94	99.90	99.96		87.59	87.53	84.91	0.00	84.90
MG772934 _Bat SARS-like coronavirus isolate bat-SL-CoVZXC21 _ complete genome _ China _ Rhinolophus sin	54.76	54.77	58.16	54.70		97.43	89.33	0.00	89.32
M G772933 _Bat SARS-like coronavirus isolate bat-SL-CoVZC45_ complete genome_China_Rhinolophus sin	54.79	58.23	58.19	54.73	99.88		89.34	0.00	89.32
	54.88	54.89	54.85	54.82	92.82	92.93		0.00	99.99
JX869059 _Human betacoronavirus 2c EMC_2012_ complete genomeHomo sa	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00
	54.89	54.91	54.85	54.81	92.79	92.91	99.96	0.00	

QIAGEN CLC Microbial Genomics Module

For microbiologists, public health laboratories, pharmaceutical, clinical and agricultural biology research

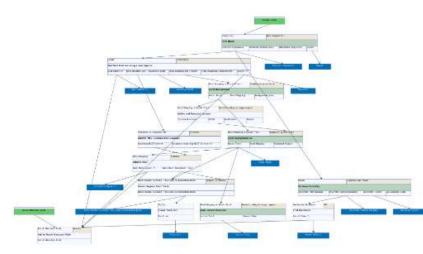
- Integrated, up-to-date microbial databases
- · Operable without dedicated programmers or bioinformaticians
- · Strain typing and epidemiology with MLST, AMR detection and outbreak tracing
- · Microbiome analysis amplicon based (16S/ITS) and whole shotgun metagenomics

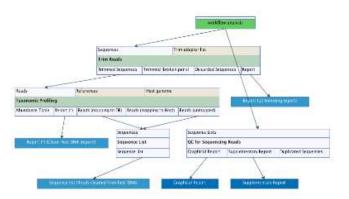
A Professor at an educational institution would be very likely to recommend QIAGEN Bioinformatics for this reason:

CLC Genomics Workbench is easy to use and very powerful. The metagenomics plugin is fantastic!

Source: Professor, Educational Institution

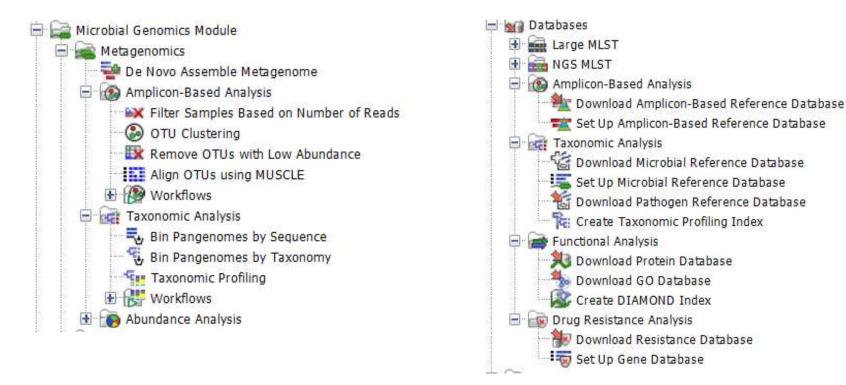
 Wildated
 Published: Sep. 18, 2019
 TVID: 349-220-815
 TechValidate


 Based on a response of 10 to the question "On a scale of 0-10, how likely would you be to recommend QIAGEN Bioinformatics?"
 TechValidate



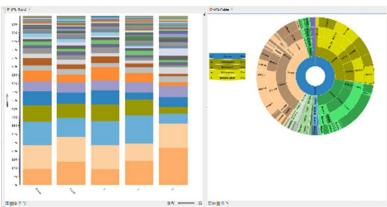
Workflows

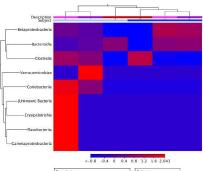
- Pre-configured workflows for commonly used functionalities
 - All parameters can be customized
 - Parameters can be locked to prevent editing
- Get you started easily
- Ensure consistency and reproducibility of analyses
- Allows for automatization



Sample to Insight

Introduction to CLC Genomics Workbench 12


Build-in workflow + download / integrated database in QIAGEN CLC Microbial Genome Module



Amplicon-based profiling

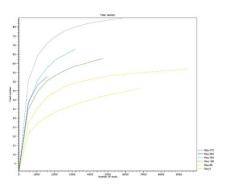
- Microbiome profiling using marker genes, 16S rRNA and ITS
- Direct download of common databases: SILVA, Greengenes and UNITE
- Clustering sequences into OTUs
- Diversity estimates
- Comparison of abundances across samples

Bar chart and sunburst diagram of the relative abundance of a bacterial community

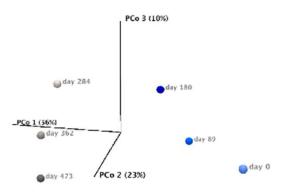
Heat map of the differential abundance across samples

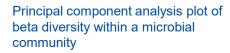
White paper: <u>Characterizing the</u> <u>microbiome through targeted</u> <u>sequencing of bacterial 16S rRNA and</u> <u>fungal ITS regions</u>

Webinar: <u>Microbiome profiling from</u> day one


- Sample to Insight

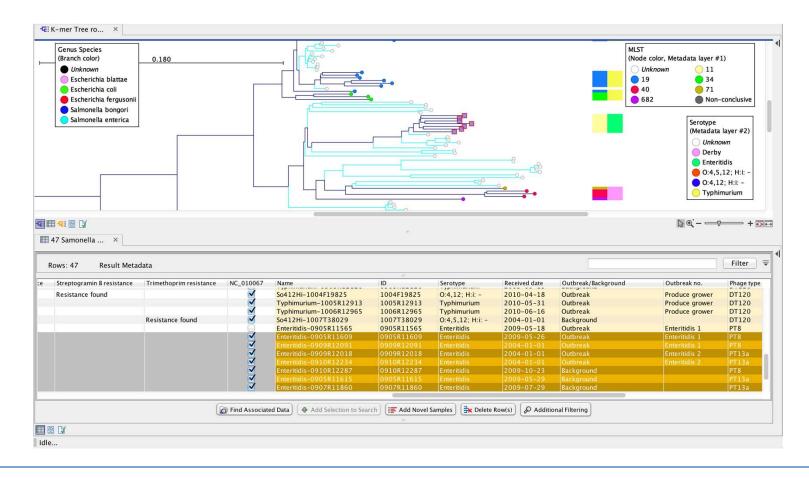
Introduction to CLC Genomics Workbench 12




Whole genome shotgun metagenomics

- Microbiome profiling based on shotgun data
- Direct access to microbial genome reference databases
 - Optimized to run on standard laptop
- Comparison of abundance across samples
- Estimation of diversity
- Functional annotation of metagenomes
 - Gene finding
 - ° Annotation with DIAMOND, BLAST and Pfam

Visualization of alpha diversity

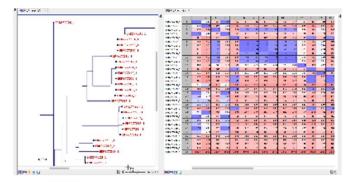

Webinar: <u>Taxonomic profiling using</u> shotgun metagenome data

- Sample to Insight

Introduction to CLC Genomics Workbench 12

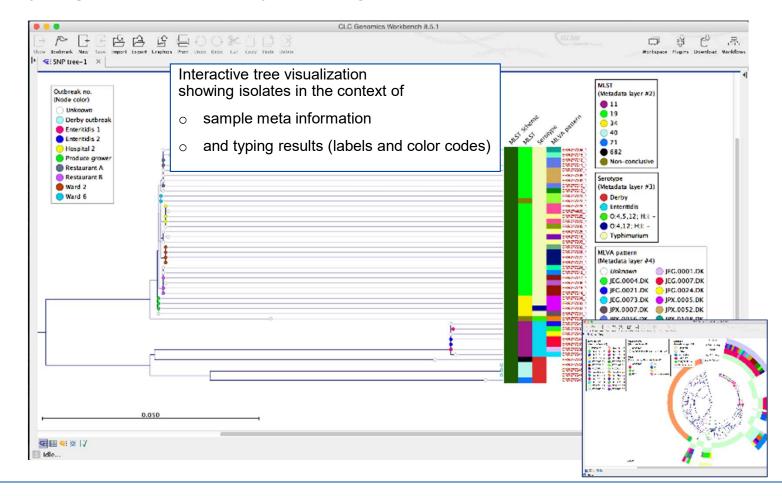
Pathogen typing - primary output is an analysis dashboard

- Sample to Insight

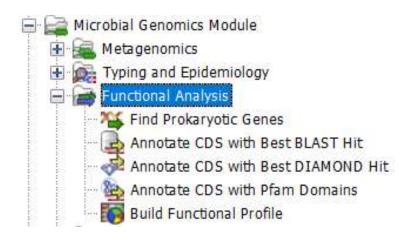


Toolbox 2 Launch Ctrl+Shift+T 2 Genome Finishing Module 3 Pa GeneMark Gene Finding 5 Ready-to-Use Workflows PB 5 23 Microbial Genomics Module Metagenomics > 60 > Long Read Support (beta) Typing and Epidemiology > R Find Best Matches using K-mer Spectra... Q: mp > Functional Analysis Create K-mer Tree... Blast2GO -> > 10 Create SNP Tree... **Classical Sequence Analysis** FR Drug Resistance Analysis > €. > 1 Extract Regions from Tracks... Whole Genome Alignment (beta) 5 Databases ÷. 1 > > Molecular Biology Tools Panel Support 22 NGS-MLST 0 > > BLAST > Large MLST Typing **Result Metadata** 1 Track Tools 2 Prepare Sequencing Data 5 Workflows 20 >

Tracing pathogen outbreaks

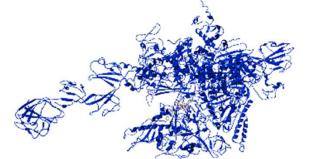

- Analyzing strain relatedness at maximum resolution
- Genome-wide comparison of single nucleotide polymorphisms
- Visualization of results
 - Dendrogram decorated with metadata
 - SNP matrix

White paper: <u>High-resolution outbreak tracing and resistance detection using WGS in the</u> <u>case of a *Mycobacterium tuberculosis* outbreak</u>



Pathogen typing – outbreak analysis at highest resolution

Advanced functions on QIAGEN CLC Microbial Genomics Module


[1] 🗘 Work	cflow Input							
M Sequences	Sequences	Gene predicti	on model					
🔀 Find Open Reading Frames	🌤 Find Prok	14 Find Prokaryotic Genes						
M Sequences Table	Annotated sec	quences	Model					
	1			* * *				
Contigs	Contigs	Pfam database	GO databa	se				
Annotate CDS with Best BLAST Hit	Annot	tate CDS with Pfa	m Domains					
Annotated Report Result Table	Annotated	Annotated Report Result Table						

*The workflow can be customized

Detection of antimicrobial resistance markers

- AMR gene finding with ResFinder
- Calling AMR causing mutations with PointFinder
- Detect ARG-ANNOT resistance markers with ShortBRED
- Resolve plasmids from chromosomal regions

Antimicrobial resistance causing mutations can be visualized in the context of 3D protein models

Poster: Whole genome sequencing for antimicrobial resistance detection and surveillance

- Sample to Insight

		40.0300	42.23	201	-1 - 001	12,000	11100	11670	1.1	000	* 349,200	1.200200	12	202.00	121.33
	1														
	1					a she in a	in in a constant				1 11 1				
9178. K	Crum'														
25. 1 .	82 <mark>-</mark>		-	_		_			_		_	-	_	_	
NAD.	*** <u>-</u>		8	_		_	-		_	_		-	82-		-+00
axe.	*** <u>-</u>		3									•	81-		
NAD.	*** <u>-</u>	. 113.		_		_		-				•	81-		
2011	1993 - 19 1949 - 19 1949 - 19	100			Autor		Aug. 17.					-			- ta
NAD' NAD' National National	400			7	ALL THE	a			•	4.74	•/4	12	14.7		- 14
NTD Total total total total	1993 - 19 1949 - 19 1949 - 19			7		••••	1	3		1.14	- 12	12		37	
10.11			:	7		11. 4 °			ä	101	•/4	12	194 - 24 13	1	- 14
			-	÷		n.#			00000	1.5 8H 201		2277	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	1
NR D'				ł		61 19 *			000000	1.000		000000	1.27.27		-
20.1 · · · · · · · · · · · · · · · · · · ·	44.4 44.4 44.4 44.4 44.4 44.4 44.4 44.					65¢ ₽ *		5246423	100000	180 200 200 200 200 200 200 200 200 200 2		12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1.
NR D'				ł		11.ap			000000	1.000		000000	1.27.27		-

Track list displaying detected variants in a TB isolate, the TB variant database and the reference genome annotations

💁 Download Resistance Da	atabase	X QIAGEN CLC Microbial Genome Mod
 Choose where to run Database to download <i>Terms of use</i> <i>Result handling</i> 	Database to download ShortBRED Marker Databases QMI-AR CARD ARG-ANNOT	 Find Resistance with ShortBRED tool. The databases are marker databases, containing peptitive that uniquely characterize sets of similar proteins, rath
	Nucleotide Databases	Find Resistance with Nucleotide DB tool. The databas nucleotide gene sequences
	Point Mutation Databases	Find Resistance with PointFinder tool. The databases about mutations in genes
20176T	PointFinder Integrated Databases ARES Database	 A Nucleotide Marker table for gene markers. From this extract a sequence list which may be used with the Fin Nucleotide DB tool. A Protein Marker table for gene markers. A Point Mutation Marker table for Single Nucleotide Permarkers. From this view, it is possible to extract a sequence is the sequence of the security of the secure of the security of the security of the security of the sec

в л н. dule

tide fragments

her than a gene

ses contain full

contain information

is view, it is possible to ind Resistance with

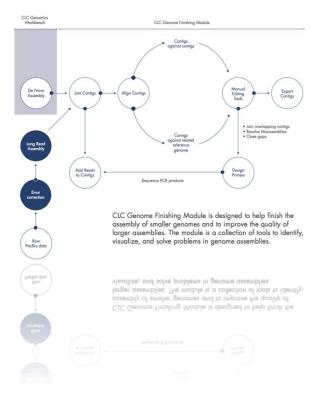
olymorphism (SNP) quence list which may be used with the Find Resistance with PointFinder tool.

- Sample to Insight

CLC Genome Finishing Module

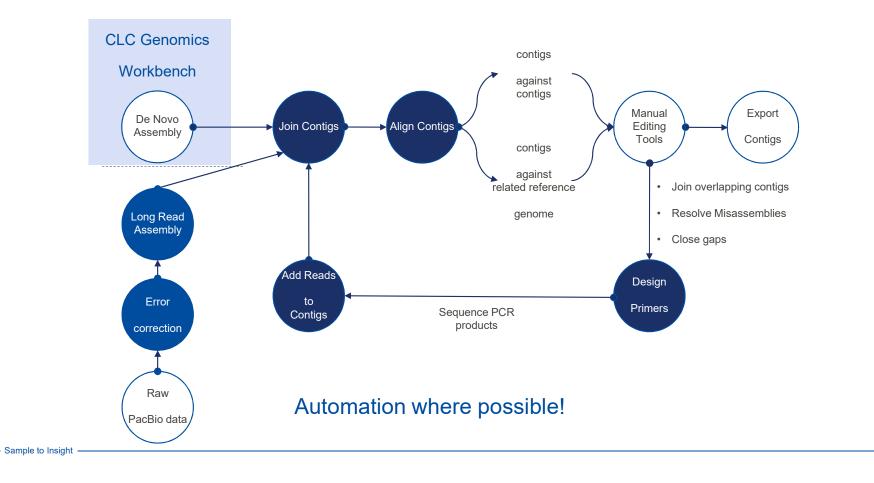
Our solution:

CLC Genome Finishing Module is an add-on to CLC Genomics Workbench, designed

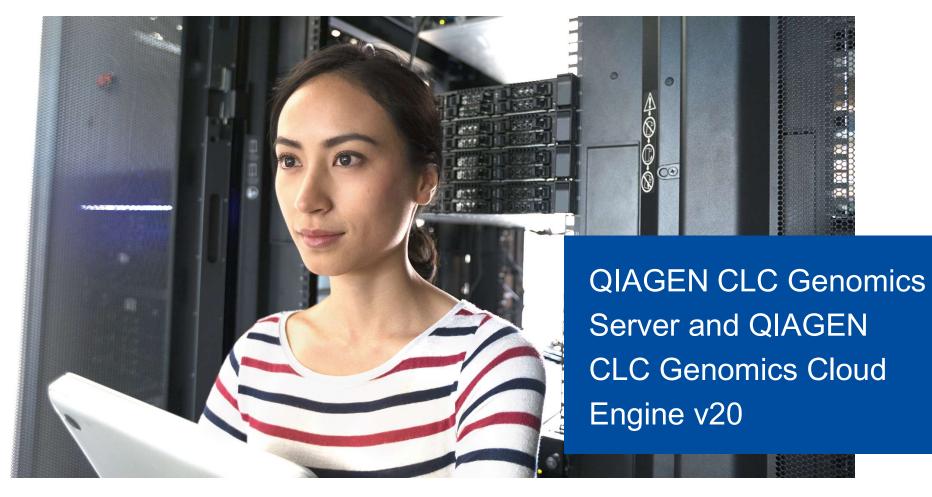

- o to accelerate and simplify genome finishing, and
- to make this process accessible to life scientist without deep understanding of bioinformatics.

Supported genome finishing applications:

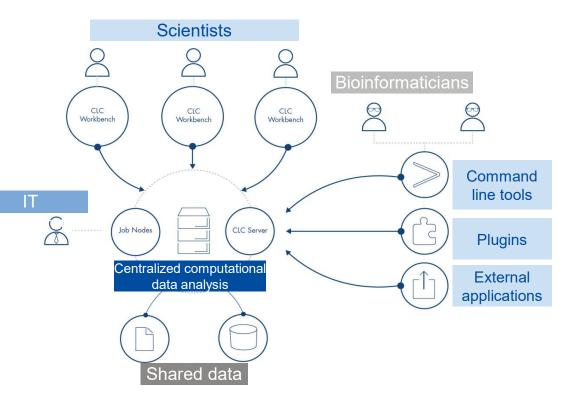
- Short read de novo assemblies
- Hybrid assemblies of short and long read data (e.g. Illumina, 454, and PacBio)
- Rapid error-correction and de novo assembly of PacBio data.


Technical Note

CLC Genome Finishing Module

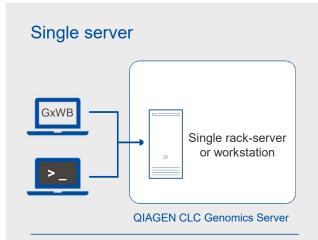


De Novo Assembly and Genome Finishing

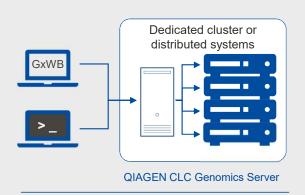

On-premise enterprise solution: QIAGEN CLC Genomics Server

From single user to enterprise-friendly NGS analysis

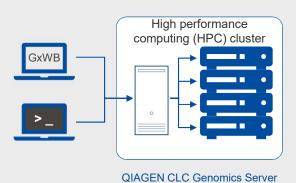
- No waiting accelerate turnaround time on data processing
- Eliminate costs for maintenance, bug fixing and upgrades
- Integrated access to in-house pipelines and external applications
- Workflow management and deployment
 - Has made us process a lot of data in a short time.
 - Chief Scientist, Medium Enterprise Health Care Company


Source: Chief Scientist, Medium Enterprise Health Care Company

CARGEN TechValidate

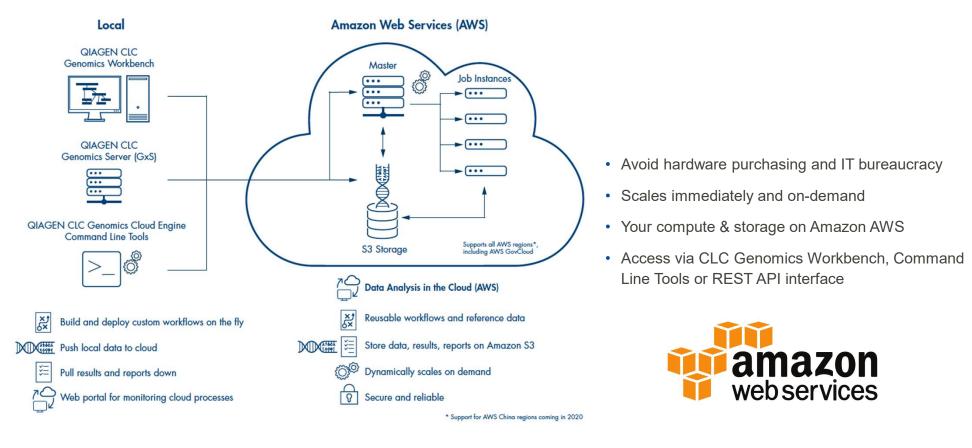


QIAGEN CLC Genomics Server – three deployment models


- · Simple to set up in minutes
- Offloads workflows, ad hoc data analysis and storage to central hub
- Single rack server or workstation
- Same capabilities as cluster setup

Master server + Job nodes

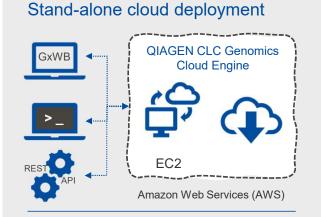
- · Easy to install and manage
- Distributes workload across multiple dedicated job nodes
- Uses built in QIAGEN CLC queueing system
- Scalable to hundreds of nodes and users


Master server + GRID nodes

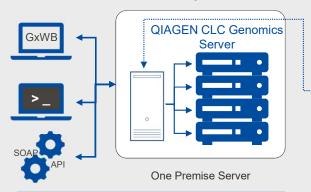
- Fully integrates into existing HPC clusters
- Supports DRMAA-compatible schedulers, i.e. UNIVA, SLURM, LFS, PBS
- Enterprise-level user management and scalability

Cloud-based enterprise solution: QIAGEN CLC Genomics Cloud Engine

QIAGEN CLC Genomics Cloud Engine administration


Supported AWS regions

Administration task


Region N. Virginia Ohio	Code us-east-1 us-east-2	GCE Command Line Tools	 Changing running environment Switch to another embedded version of the Genomics server Updating or upgrading a GCE licenses Adding and updating CLC Genomics Server Plugins
N. California	us-west-1		
Oregon	us-west-2	AWS Elastic	Change autoscaling behavior
Frankfurt	eu-central-1	Beanstalk Management Console	Change or configure instance types usedModifying OAuth configuration
Ireland	eu-west-1	management concord	Configure and enabling automatic platform updates
Tokyo	ap-northeast-1		
Seoul	ap-northeast-2	AWS DynamoDB	Enter or exit from maintenance mode
Sydney	ap-southeast-2	Management Console	Enable or configure signed URLs for files stored on S3
Mumbai	ap-south-1	AWS CloudWatch	Inspect license usage metrics and jobs
GovCloud (US-East)	us-gov-east-1		 Monitor, inspect, and export the log files created Changing Log Retention
GovCloud (US-West)	us-gov-west-1		

QIAGEN CLC Genomics Cloud Engine – two deployment models

- Instantly run any QIAGEN CLC workflow in the cloud
- Installed, managed and runs on your Amazon AWS account
- Connect from QIAGEN CLC
 Workbench, command-line or REST
 interface

- Seamless extend existing QIAGEN
 CLC Genomics Server installations
- Provides virtual queues to offload workflows into the cloud
- Eliminates additional capital expenditures

Hybrid server or cloud deployment

- Multiple, secure access points via Workbench, Server, Command Line Tool or REST interface
- Web-based administration and jobmonitoring tool
- QIAGEN Digital Insights expert installation and support

Educational Training License Program

Free QIAGEN CLC Genomics Workbench licenses for academic classroom settings

- Up to 30 licenses per academic course
- Available only to academic customers with active licenses for QIAGEN CLC Genomics Server or QIAGEN CLC Genomics Cloud Engine

Contact us for details: bioinformaticssales@qiagen.com

Discovery Bioinformatics Services

Access to 30 years of knowledge and 400 industry experts

- Data analysis services
- Curation
- · Bioinformatics and scientific consulting
- Custom solutions

Trademarks: QIAGEN[®], Sample to Insight[®], QIAseq[®] (QIAGEN Group); Illumina[®] (Illumina, Inc.); Ion Torrent[™] (Thermo Fisher Scientifc); Oxford Nanopore[®] (Oxford Nanopore Technologies); PacBio[®], Pacific Biosciences[®] (Pacific Biosciences of California, Inc.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. PROM-15965-001 © 2020, QIAGEN, all rights reserved.

Sample to Insight